This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzadd.b | |- B = ( Base ` G ) |
|
| gsumzadd.0 | |- .0. = ( 0g ` G ) |
||
| gsumzadd.p | |- .+ = ( +g ` G ) |
||
| gsumzadd.z | |- Z = ( Cntz ` G ) |
||
| gsumzadd.g | |- ( ph -> G e. Mnd ) |
||
| gsumzadd.a | |- ( ph -> A e. V ) |
||
| gsumzadd.fn | |- ( ph -> F finSupp .0. ) |
||
| gsumzadd.hn | |- ( ph -> H finSupp .0. ) |
||
| gsumzadd.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
||
| gsumzadd.c | |- ( ph -> S C_ ( Z ` S ) ) |
||
| gsumzadd.f | |- ( ph -> F : A --> S ) |
||
| gsumzadd.h | |- ( ph -> H : A --> S ) |
||
| Assertion | gsumzadd | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzadd.b | |- B = ( Base ` G ) |
|
| 2 | gsumzadd.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumzadd.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumzadd.z | |- Z = ( Cntz ` G ) |
|
| 5 | gsumzadd.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumzadd.a | |- ( ph -> A e. V ) |
|
| 7 | gsumzadd.fn | |- ( ph -> F finSupp .0. ) |
|
| 8 | gsumzadd.hn | |- ( ph -> H finSupp .0. ) |
|
| 9 | gsumzadd.s | |- ( ph -> S e. ( SubMnd ` G ) ) |
|
| 10 | gsumzadd.c | |- ( ph -> S C_ ( Z ` S ) ) |
|
| 11 | gsumzadd.f | |- ( ph -> F : A --> S ) |
|
| 12 | gsumzadd.h | |- ( ph -> H : A --> S ) |
|
| 13 | eqid | |- ( ( F u. H ) supp .0. ) = ( ( F u. H ) supp .0. ) |
|
| 14 | 1 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ B ) |
| 15 | 9 14 | syl | |- ( ph -> S C_ B ) |
| 16 | 11 15 | fssd | |- ( ph -> F : A --> B ) |
| 17 | 12 15 | fssd | |- ( ph -> H : A --> B ) |
| 18 | 11 | frnd | |- ( ph -> ran F C_ S ) |
| 19 | 4 | cntzidss | |- ( ( S C_ ( Z ` S ) /\ ran F C_ S ) -> ran F C_ ( Z ` ran F ) ) |
| 20 | 10 18 19 | syl2anc | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
| 21 | 12 | frnd | |- ( ph -> ran H C_ S ) |
| 22 | 4 | cntzidss | |- ( ( S C_ ( Z ` S ) /\ ran H C_ S ) -> ran H C_ ( Z ` ran H ) ) |
| 23 | 10 21 22 | syl2anc | |- ( ph -> ran H C_ ( Z ` ran H ) ) |
| 24 | 3 | submcl | |- ( ( S e. ( SubMnd ` G ) /\ x e. S /\ y e. S ) -> ( x .+ y ) e. S ) |
| 25 | 24 | 3expb | |- ( ( S e. ( SubMnd ` G ) /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 26 | 9 25 | sylan | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x .+ y ) e. S ) |
| 27 | inidm | |- ( A i^i A ) = A |
|
| 28 | 26 11 12 6 6 27 | off | |- ( ph -> ( F oF .+ H ) : A --> S ) |
| 29 | 28 | frnd | |- ( ph -> ran ( F oF .+ H ) C_ S ) |
| 30 | 4 | cntzidss | |- ( ( S C_ ( Z ` S ) /\ ran ( F oF .+ H ) C_ S ) -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
| 31 | 10 29 30 | syl2anc | |- ( ph -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
| 32 | 10 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ ( Z ` S ) ) |
| 33 | 15 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ B ) |
| 34 | 5 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> G e. Mnd ) |
| 35 | vex | |- x e. _V |
|
| 36 | 35 | a1i | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> x e. _V ) |
| 37 | 9 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S e. ( SubMnd ` G ) ) |
| 38 | simpl | |- ( ( x C_ A /\ k e. ( A \ x ) ) -> x C_ A ) |
|
| 39 | fssres | |- ( ( H : A --> S /\ x C_ A ) -> ( H |` x ) : x --> S ) |
|
| 40 | 12 38 39 | syl2an | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H |` x ) : x --> S ) |
| 41 | 23 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ran H C_ ( Z ` ran H ) ) |
| 42 | resss | |- ( H |` x ) C_ H |
|
| 43 | 42 | rnssi | |- ran ( H |` x ) C_ ran H |
| 44 | 4 | cntzidss | |- ( ( ran H C_ ( Z ` ran H ) /\ ran ( H |` x ) C_ ran H ) -> ran ( H |` x ) C_ ( Z ` ran ( H |` x ) ) ) |
| 45 | 41 43 44 | sylancl | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ran ( H |` x ) C_ ( Z ` ran ( H |` x ) ) ) |
| 46 | 12 | ffund | |- ( ph -> Fun H ) |
| 47 | 46 | funresd | |- ( ph -> Fun ( H |` x ) ) |
| 48 | 47 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> Fun ( H |` x ) ) |
| 49 | 8 | fsuppimpd | |- ( ph -> ( H supp .0. ) e. Fin ) |
| 50 | 49 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H supp .0. ) e. Fin ) |
| 51 | 12 6 | fexd | |- ( ph -> H e. _V ) |
| 52 | 2 | fvexi | |- .0. e. _V |
| 53 | ressuppss | |- ( ( H e. _V /\ .0. e. _V ) -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
|
| 54 | 51 52 53 | sylancl | |- ( ph -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
| 55 | 54 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) supp .0. ) C_ ( H supp .0. ) ) |
| 56 | 50 55 | ssfid | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) supp .0. ) e. Fin ) |
| 57 | resfunexg | |- ( ( Fun H /\ x e. _V ) -> ( H |` x ) e. _V ) |
|
| 58 | 46 35 57 | sylancl | |- ( ph -> ( H |` x ) e. _V ) |
| 59 | isfsupp | |- ( ( ( H |` x ) e. _V /\ .0. e. _V ) -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
|
| 60 | 58 52 59 | sylancl | |- ( ph -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
| 61 | 60 | adantr | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( ( H |` x ) finSupp .0. <-> ( Fun ( H |` x ) /\ ( ( H |` x ) supp .0. ) e. Fin ) ) ) |
| 62 | 48 56 61 | mpbir2and | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( H |` x ) finSupp .0. ) |
| 63 | 2 4 34 36 37 40 45 62 | gsumzsubmcl | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( G gsum ( H |` x ) ) e. S ) |
| 64 | 63 | snssd | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> { ( G gsum ( H |` x ) ) } C_ S ) |
| 65 | 1 4 | cntz2ss | |- ( ( S C_ B /\ { ( G gsum ( H |` x ) ) } C_ S ) -> ( Z ` S ) C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 66 | 33 64 65 | syl2anc | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( Z ` S ) C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 67 | 32 66 | sstrd | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> S C_ ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 68 | eldifi | |- ( k e. ( A \ x ) -> k e. A ) |
|
| 69 | 68 | adantl | |- ( ( x C_ A /\ k e. ( A \ x ) ) -> k e. A ) |
| 70 | ffvelcdm | |- ( ( F : A --> S /\ k e. A ) -> ( F ` k ) e. S ) |
|
| 71 | 11 69 70 | syl2an | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. S ) |
| 72 | 67 71 | sseldd | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 73 | 1 2 3 4 5 6 7 8 13 16 17 20 23 31 72 | gsumzaddlem | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |