This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz1f1o | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 2 | elnn0 | |- ( ( # ` A ) e. NN0 <-> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
|
| 3 | 1 2 | sylib | |- ( A e. Fin -> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
| 4 | 3 | orcomd | |- ( A e. Fin -> ( ( # ` A ) = 0 \/ ( # ` A ) e. NN ) ) |
| 5 | hasheq0 | |- ( A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
|
| 6 | isfinite4 | |- ( A e. Fin <-> ( 1 ... ( # ` A ) ) ~~ A ) |
|
| 7 | bren | |- ( ( 1 ... ( # ` A ) ) ~~ A <-> E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 8 | 6 7 | sylbb | |- ( A e. Fin -> E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 9 | 8 | biantrud | |- ( A e. Fin -> ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |
| 10 | 5 9 | orbi12d | |- ( A e. Fin -> ( ( ( # ` A ) = 0 \/ ( # ` A ) e. NN ) <-> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) ) |
| 11 | 4 10 | mpbid | |- ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) |