This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cores | |- ( ran B C_ C -> ( ( A |` C ) o. B ) = ( A o. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- z e. _V |
|
| 2 | vex | |- y e. _V |
|
| 3 | 1 2 | brelrn | |- ( z B y -> y e. ran B ) |
| 4 | ssel | |- ( ran B C_ C -> ( y e. ran B -> y e. C ) ) |
|
| 5 | vex | |- x e. _V |
|
| 6 | 5 | brresi | |- ( y ( A |` C ) x <-> ( y e. C /\ y A x ) ) |
| 7 | 6 | baib | |- ( y e. C -> ( y ( A |` C ) x <-> y A x ) ) |
| 8 | 3 4 7 | syl56 | |- ( ran B C_ C -> ( z B y -> ( y ( A |` C ) x <-> y A x ) ) ) |
| 9 | 8 | pm5.32d | |- ( ran B C_ C -> ( ( z B y /\ y ( A |` C ) x ) <-> ( z B y /\ y A x ) ) ) |
| 10 | 9 | exbidv | |- ( ran B C_ C -> ( E. y ( z B y /\ y ( A |` C ) x ) <-> E. y ( z B y /\ y A x ) ) ) |
| 11 | 10 | opabbidv | |- ( ran B C_ C -> { <. z , x >. | E. y ( z B y /\ y ( A |` C ) x ) } = { <. z , x >. | E. y ( z B y /\ y A x ) } ) |
| 12 | df-co | |- ( ( A |` C ) o. B ) = { <. z , x >. | E. y ( z B y /\ y ( A |` C ) x ) } |
|
| 13 | df-co | |- ( A o. B ) = { <. z , x >. | E. y ( z B y /\ y A x ) } |
|
| 14 | 11 12 13 | 3eqtr4g | |- ( ran B C_ C -> ( ( A |` C ) o. B ) = ( A o. B ) ) |