This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfveq.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| seqfveq.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = ( G ` k ) ) |
||
| Assertion | seqfveq | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfveq.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | seqfveq.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = ( G ` k ) ) |
|
| 3 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 4 | 1 3 | syl | |- ( ph -> M e. ZZ ) |
| 5 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 6 | 4 5 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 7 | seq1 | |- ( M e. ZZ -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
|
| 8 | 4 7 | syl | |- ( ph -> ( seq M ( .+ , F ) ` M ) = ( F ` M ) ) |
| 9 | fveq2 | |- ( k = M -> ( F ` k ) = ( F ` M ) ) |
|
| 10 | fveq2 | |- ( k = M -> ( G ` k ) = ( G ` M ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( k = M -> ( ( F ` k ) = ( G ` k ) <-> ( F ` M ) = ( G ` M ) ) ) |
| 12 | 2 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) ( F ` k ) = ( G ` k ) ) |
| 13 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 14 | 1 13 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 15 | 11 12 14 | rspcdva | |- ( ph -> ( F ` M ) = ( G ` M ) ) |
| 16 | 8 15 | eqtrd | |- ( ph -> ( seq M ( .+ , F ) ` M ) = ( G ` M ) ) |
| 17 | fzp1ss | |- ( M e. ZZ -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
|
| 18 | 4 17 | syl | |- ( ph -> ( ( M + 1 ) ... N ) C_ ( M ... N ) ) |
| 19 | 18 | sselda | |- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
| 20 | 19 2 | syldan | |- ( ( ph /\ k e. ( ( M + 1 ) ... N ) ) -> ( F ` k ) = ( G ` k ) ) |
| 21 | 6 16 1 20 | seqfveq2 | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq M ( .+ , G ) ` N ) ) |