This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cvgcmpce.1 | |- Z = ( ZZ>= ` M ) |
|
| cvgcmpce.2 | |- ( ph -> N e. Z ) |
||
| cvgcmpce.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| cvgcmpce.4 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
||
| cvgcmpce.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| cvgcmpce.6 | |- ( ph -> C e. RR ) |
||
| cvgcmpce.7 | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( abs ` ( G ` k ) ) <_ ( C x. ( F ` k ) ) ) |
||
| Assertion | cvgcmpce | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvgcmpce.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | cvgcmpce.2 | |- ( ph -> N e. Z ) |
|
| 3 | cvgcmpce.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 4 | cvgcmpce.4 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
|
| 5 | cvgcmpce.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 6 | cvgcmpce.6 | |- ( ph -> C e. RR ) |
|
| 7 | cvgcmpce.7 | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( abs ` ( G ` k ) ) <_ ( C x. ( F ` k ) ) ) |
|
| 8 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 9 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 10 | 8 9 | syl | |- ( ph -> M e. ZZ ) |
| 11 | 1 10 4 | serf | |- ( ph -> seq M ( + , G ) : Z --> CC ) |
| 12 | 11 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) e. CC ) |
| 13 | fveq2 | |- ( m = k -> ( F ` m ) = ( F ` k ) ) |
|
| 14 | 13 | oveq2d | |- ( m = k -> ( C x. ( F ` m ) ) = ( C x. ( F ` k ) ) ) |
| 15 | eqid | |- ( m e. Z |-> ( C x. ( F ` m ) ) ) = ( m e. Z |-> ( C x. ( F ` m ) ) ) |
|
| 16 | ovex | |- ( C x. ( F ` k ) ) e. _V |
|
| 17 | 14 15 16 | fvmpt | |- ( k e. Z -> ( ( m e. Z |-> ( C x. ( F ` m ) ) ) ` k ) = ( C x. ( F ` k ) ) ) |
| 18 | 17 | adantl | |- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( C x. ( F ` m ) ) ) ` k ) = ( C x. ( F ` k ) ) ) |
| 19 | 6 | adantr | |- ( ( ph /\ k e. Z ) -> C e. RR ) |
| 20 | 19 3 | remulcld | |- ( ( ph /\ k e. Z ) -> ( C x. ( F ` k ) ) e. RR ) |
| 21 | 18 20 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( C x. ( F ` m ) ) ) ` k ) e. RR ) |
| 22 | 2fveq3 | |- ( m = k -> ( abs ` ( G ` m ) ) = ( abs ` ( G ` k ) ) ) |
|
| 23 | eqid | |- ( m e. Z |-> ( abs ` ( G ` m ) ) ) = ( m e. Z |-> ( abs ` ( G ` m ) ) ) |
|
| 24 | fvex | |- ( abs ` ( G ` k ) ) e. _V |
|
| 25 | 22 23 24 | fvmpt | |- ( k e. Z -> ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) = ( abs ` ( G ` k ) ) ) |
| 26 | 25 | adantl | |- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) = ( abs ` ( G ` k ) ) ) |
| 27 | 4 | abscld | |- ( ( ph /\ k e. Z ) -> ( abs ` ( G ` k ) ) e. RR ) |
| 28 | 26 27 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) e. RR ) |
| 29 | 6 | recnd | |- ( ph -> C e. CC ) |
| 30 | climdm | |- ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
|
| 31 | 5 30 | sylib | |- ( ph -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
| 32 | 3 | recnd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 33 | 1 10 29 31 32 18 | isermulc2 | |- ( ph -> seq M ( + , ( m e. Z |-> ( C x. ( F ` m ) ) ) ) ~~> ( C x. ( ~~> ` seq M ( + , F ) ) ) ) |
| 34 | climrel | |- Rel ~~> |
|
| 35 | 34 | releldmi | |- ( seq M ( + , ( m e. Z |-> ( C x. ( F ` m ) ) ) ) ~~> ( C x. ( ~~> ` seq M ( + , F ) ) ) -> seq M ( + , ( m e. Z |-> ( C x. ( F ` m ) ) ) ) e. dom ~~> ) |
| 36 | 33 35 | syl | |- ( ph -> seq M ( + , ( m e. Z |-> ( C x. ( F ` m ) ) ) ) e. dom ~~> ) |
| 37 | 1 | uztrn2 | |- ( ( N e. Z /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 38 | 2 37 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> k e. Z ) |
| 39 | 4 | absge0d | |- ( ( ph /\ k e. Z ) -> 0 <_ ( abs ` ( G ` k ) ) ) |
| 40 | 39 26 | breqtrrd | |- ( ( ph /\ k e. Z ) -> 0 <_ ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) ) |
| 41 | 38 40 | syldan | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> 0 <_ ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) ) |
| 42 | 38 25 | syl | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) = ( abs ` ( G ` k ) ) ) |
| 43 | 38 17 | syl | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( m e. Z |-> ( C x. ( F ` m ) ) ) ` k ) = ( C x. ( F ` k ) ) ) |
| 44 | 7 42 43 | 3brtr4d | |- ( ( ph /\ k e. ( ZZ>= ` N ) ) -> ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) <_ ( ( m e. Z |-> ( C x. ( F ` m ) ) ) ` k ) ) |
| 45 | 1 2 21 28 36 41 44 | cvgcmp | |- ( ph -> seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) e. dom ~~> ) |
| 46 | 1 | climcau | |- ( ( M e. ZZ /\ seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) e. dom ~~> ) -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) < x ) |
| 47 | 10 45 46 | syl2anc | |- ( ph -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) < x ) |
| 48 | 1 10 28 | serfre | |- ( ph -> seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) : Z --> RR ) |
| 49 | 48 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) : Z --> RR ) |
| 50 | 1 | uztrn2 | |- ( ( j e. Z /\ n e. ( ZZ>= ` j ) ) -> n e. Z ) |
| 51 | 50 | adantl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. Z ) |
| 52 | 49 51 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) e. RR ) |
| 53 | simprl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. Z ) |
|
| 54 | 49 53 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) e. RR ) |
| 55 | 52 54 | resubcld | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) e. RR ) |
| 56 | 0red | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 e. RR ) |
|
| 57 | 11 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> seq M ( + , G ) : Z --> CC ) |
| 58 | 57 51 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , G ) ` n ) e. CC ) |
| 59 | 57 53 | ffvelcdmd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( seq M ( + , G ) ` j ) e. CC ) |
| 60 | 58 59 | subcld | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) e. CC ) |
| 61 | 60 | abscld | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) e. RR ) |
| 62 | 60 | absge0d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) ) |
| 63 | fzfid | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( M ... n ) e. Fin ) |
|
| 64 | difss | |- ( ( M ... n ) \ ( M ... j ) ) C_ ( M ... n ) |
|
| 65 | ssfi | |- ( ( ( M ... n ) e. Fin /\ ( ( M ... n ) \ ( M ... j ) ) C_ ( M ... n ) ) -> ( ( M ... n ) \ ( M ... j ) ) e. Fin ) |
|
| 66 | 63 64 65 | sylancl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( M ... n ) \ ( M ... j ) ) e. Fin ) |
| 67 | eldifi | |- ( k e. ( ( M ... n ) \ ( M ... j ) ) -> k e. ( M ... n ) ) |
|
| 68 | simpll | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ph ) |
|
| 69 | elfzuz | |- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
|
| 70 | 69 1 | eleqtrrdi | |- ( k e. ( M ... n ) -> k e. Z ) |
| 71 | 68 70 4 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... n ) ) -> ( G ` k ) e. CC ) |
| 72 | 67 71 | sylan2 | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ( M ... n ) \ ( M ... j ) ) ) -> ( G ` k ) e. CC ) |
| 73 | 66 72 | fsumabs | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( G ` k ) ) <_ sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( abs ` ( G ` k ) ) ) |
| 74 | eqidd | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... n ) ) -> ( G ` k ) = ( G ` k ) ) |
|
| 75 | 51 1 | eleqtrdi | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> n e. ( ZZ>= ` M ) ) |
| 76 | 74 75 71 | fsumser | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( M ... n ) ( G ` k ) = ( seq M ( + , G ) ` n ) ) |
| 77 | eqidd | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... j ) ) -> ( G ` k ) = ( G ` k ) ) |
|
| 78 | 53 1 | eleqtrdi | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> j e. ( ZZ>= ` M ) ) |
| 79 | elfzuz | |- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
|
| 80 | 79 1 | eleqtrrdi | |- ( k e. ( M ... j ) -> k e. Z ) |
| 81 | 68 80 4 | syl2an | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... j ) ) -> ( G ` k ) e. CC ) |
| 82 | 77 78 81 | fsumser | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( M ... j ) ( G ` k ) = ( seq M ( + , G ) ` j ) ) |
| 83 | 76 82 | oveq12d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( sum_ k e. ( M ... n ) ( G ` k ) - sum_ k e. ( M ... j ) ( G ` k ) ) = ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) |
| 84 | fzfid | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( M ... j ) e. Fin ) |
|
| 85 | 84 81 | fsumcl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( M ... j ) ( G ` k ) e. CC ) |
| 86 | 66 72 | fsumcl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( G ` k ) e. CC ) |
| 87 | disjdif | |- ( ( M ... j ) i^i ( ( M ... n ) \ ( M ... j ) ) ) = (/) |
|
| 88 | 87 | a1i | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( M ... j ) i^i ( ( M ... n ) \ ( M ... j ) ) ) = (/) ) |
| 89 | undif2 | |- ( ( M ... j ) u. ( ( M ... n ) \ ( M ... j ) ) ) = ( ( M ... j ) u. ( M ... n ) ) |
|
| 90 | fzss2 | |- ( n e. ( ZZ>= ` j ) -> ( M ... j ) C_ ( M ... n ) ) |
|
| 91 | 90 | ad2antll | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( M ... j ) C_ ( M ... n ) ) |
| 92 | ssequn1 | |- ( ( M ... j ) C_ ( M ... n ) <-> ( ( M ... j ) u. ( M ... n ) ) = ( M ... n ) ) |
|
| 93 | 91 92 | sylib | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( M ... j ) u. ( M ... n ) ) = ( M ... n ) ) |
| 94 | 89 93 | eqtr2id | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( M ... n ) = ( ( M ... j ) u. ( ( M ... n ) \ ( M ... j ) ) ) ) |
| 95 | 88 94 63 71 | fsumsplit | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( M ... n ) ( G ` k ) = ( sum_ k e. ( M ... j ) ( G ` k ) + sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( G ` k ) ) ) |
| 96 | 85 86 95 | mvrladdd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( sum_ k e. ( M ... n ) ( G ` k ) - sum_ k e. ( M ... j ) ( G ` k ) ) = sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( G ` k ) ) |
| 97 | 83 96 | eqtr3d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) = sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( G ` k ) ) |
| 98 | 97 | fveq2d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) = ( abs ` sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( G ` k ) ) ) |
| 99 | 70 | adantl | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... n ) ) -> k e. Z ) |
| 100 | 99 25 | syl | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... n ) ) -> ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) = ( abs ` ( G ` k ) ) ) |
| 101 | abscl | |- ( ( G ` k ) e. CC -> ( abs ` ( G ` k ) ) e. RR ) |
|
| 102 | 101 | recnd | |- ( ( G ` k ) e. CC -> ( abs ` ( G ` k ) ) e. CC ) |
| 103 | 71 102 | syl | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... n ) ) -> ( abs ` ( G ` k ) ) e. CC ) |
| 104 | 100 75 103 | fsumser | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( M ... n ) ( abs ` ( G ` k ) ) = ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) ) |
| 105 | 80 | adantl | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... j ) ) -> k e. Z ) |
| 106 | 105 25 | syl | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... j ) ) -> ( ( m e. Z |-> ( abs ` ( G ` m ) ) ) ` k ) = ( abs ` ( G ` k ) ) ) |
| 107 | 81 102 | syl | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( M ... j ) ) -> ( abs ` ( G ` k ) ) e. CC ) |
| 108 | 106 78 107 | fsumser | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( M ... j ) ( abs ` ( G ` k ) ) = ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) |
| 109 | 104 108 | oveq12d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( sum_ k e. ( M ... n ) ( abs ` ( G ` k ) ) - sum_ k e. ( M ... j ) ( abs ` ( G ` k ) ) ) = ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) |
| 110 | 84 107 | fsumcl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( M ... j ) ( abs ` ( G ` k ) ) e. CC ) |
| 111 | 72 102 | syl | |- ( ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) /\ k e. ( ( M ... n ) \ ( M ... j ) ) ) -> ( abs ` ( G ` k ) ) e. CC ) |
| 112 | 66 111 | fsumcl | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( abs ` ( G ` k ) ) e. CC ) |
| 113 | 88 94 63 103 | fsumsplit | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> sum_ k e. ( M ... n ) ( abs ` ( G ` k ) ) = ( sum_ k e. ( M ... j ) ( abs ` ( G ` k ) ) + sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( abs ` ( G ` k ) ) ) ) |
| 114 | 110 112 113 | mvrladdd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( sum_ k e. ( M ... n ) ( abs ` ( G ` k ) ) - sum_ k e. ( M ... j ) ( abs ` ( G ` k ) ) ) = sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( abs ` ( G ` k ) ) ) |
| 115 | 109 114 | eqtr3d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) = sum_ k e. ( ( M ... n ) \ ( M ... j ) ) ( abs ` ( G ` k ) ) ) |
| 116 | 73 98 115 | 3brtr4d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) <_ ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) |
| 117 | 56 61 55 62 116 | letrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> 0 <_ ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) |
| 118 | 55 117 | absidd | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) = ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) |
| 119 | 118 | breq1d | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) < x <-> ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) < x ) ) |
| 120 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 121 | 120 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> x e. RR ) |
| 122 | lelttr | |- ( ( ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) e. RR /\ ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) e. RR /\ x e. RR ) -> ( ( ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) <_ ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) /\ ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) < x ) -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) ) |
|
| 123 | 61 55 121 122 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) <_ ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) /\ ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) < x ) -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) ) |
| 124 | 116 123 | mpand | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) < x -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) ) |
| 125 | 119 124 | sylbid | |- ( ( ( ph /\ x e. RR+ ) /\ ( j e. Z /\ n e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) < x -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) ) |
| 126 | 125 | anassrs | |- ( ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) /\ n e. ( ZZ>= ` j ) ) -> ( ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) < x -> ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) ) |
| 127 | 126 | ralimdva | |- ( ( ( ph /\ x e. RR+ ) /\ j e. Z ) -> ( A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) < x -> A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) ) |
| 128 | 127 | reximdva | |- ( ( ph /\ x e. RR+ ) -> ( E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) < x -> E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) ) |
| 129 | 128 | ralimdva | |- ( ph -> ( A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` n ) - ( seq M ( + , ( m e. Z |-> ( abs ` ( G ` m ) ) ) ) ` j ) ) ) < x -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) ) |
| 130 | 47 129 | mpd | |- ( ph -> A. x e. RR+ E. j e. Z A. n e. ( ZZ>= ` j ) ( abs ` ( ( seq M ( + , G ) ` n ) - ( seq M ( + , G ) ` j ) ) ) < x ) |
| 131 | seqex | |- seq M ( + , G ) e. _V |
|
| 132 | 131 | a1i | |- ( ph -> seq M ( + , G ) e. _V ) |
| 133 | 1 12 130 132 | caucvg | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |