This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
||
| abelthlem6.1 | |- ( ph -> X e. ( S \ { 1 } ) ) |
||
| Assertion | abelthlem7a | |- ( ph -> ( X e. CC /\ ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 7 | abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
|
| 8 | abelthlem6.1 | |- ( ph -> X e. ( S \ { 1 } ) ) |
|
| 9 | 8 | eldifad | |- ( ph -> X e. S ) |
| 10 | oveq2 | |- ( z = X -> ( 1 - z ) = ( 1 - X ) ) |
|
| 11 | 10 | fveq2d | |- ( z = X -> ( abs ` ( 1 - z ) ) = ( abs ` ( 1 - X ) ) ) |
| 12 | fveq2 | |- ( z = X -> ( abs ` z ) = ( abs ` X ) ) |
|
| 13 | 12 | oveq2d | |- ( z = X -> ( 1 - ( abs ` z ) ) = ( 1 - ( abs ` X ) ) ) |
| 14 | 13 | oveq2d | |- ( z = X -> ( M x. ( 1 - ( abs ` z ) ) ) = ( M x. ( 1 - ( abs ` X ) ) ) ) |
| 15 | 11 14 | breq12d | |- ( z = X -> ( ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) <-> ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) ) |
| 16 | 15 5 | elrab2 | |- ( X e. S <-> ( X e. CC /\ ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) ) |
| 17 | 9 16 | sylib | |- ( ph -> ( X e. CC /\ ( abs ` ( 1 - X ) ) <_ ( M x. ( 1 - ( abs ` X ) ) ) ) ) |