This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difrp | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | posdif | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |
|
| 2 | resubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
|
| 3 | 2 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 4 | elrp | |- ( ( B - A ) e. RR+ <-> ( ( B - A ) e. RR /\ 0 < ( B - A ) ) ) |
|
| 5 | 4 | baib | |- ( ( B - A ) e. RR -> ( ( B - A ) e. RR+ <-> 0 < ( B - A ) ) ) |
| 6 | 3 5 | syl | |- ( ( A e. RR /\ B e. RR ) -> ( ( B - A ) e. RR+ <-> 0 < ( B - A ) ) ) |
| 7 | 1 6 | bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |