This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real between 0 and 1 inclusive raised to a nonnegative integer power is less than or equal to 1. (Contributed by Paul Chapman, 29-Dec-2007) (Revised by Mario Carneiro, 5-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exple1 | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> ( A ^ N ) <_ 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> A e. RR ) |
|
| 2 | 0nn0 | |- 0 e. NN0 |
|
| 3 | 2 | a1i | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> 0 e. NN0 ) |
| 4 | simpr | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> N e. NN0 ) |
|
| 5 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 6 | 4 5 | eleqtrdi | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
| 7 | simpl2 | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> 0 <_ A ) |
|
| 8 | simpl3 | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> A <_ 1 ) |
|
| 9 | leexp2r | |- ( ( ( A e. RR /\ 0 e. NN0 /\ N e. ( ZZ>= ` 0 ) ) /\ ( 0 <_ A /\ A <_ 1 ) ) -> ( A ^ N ) <_ ( A ^ 0 ) ) |
|
| 10 | 1 3 6 7 8 9 | syl32anc | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> ( A ^ N ) <_ ( A ^ 0 ) ) |
| 11 | 1 | recnd | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> A e. CC ) |
| 12 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 13 | 11 12 | syl | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> ( A ^ 0 ) = 1 ) |
| 14 | 10 13 | breqtrd | |- ( ( ( A e. RR /\ 0 <_ A /\ A <_ 1 ) /\ N e. NN0 ) -> ( A ^ N ) <_ 1 ) |