This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
||
| Assertion | abelthlem8 | |- ( ( ph /\ R e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 7 | abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
|
| 8 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 9 | 0zd | |- ( ( ph /\ R e. RR+ ) -> 0 e. ZZ ) |
|
| 10 | id | |- ( R e. RR+ -> R e. RR+ ) |
|
| 11 | 3 4 | ge0p1rpd | |- ( ph -> ( M + 1 ) e. RR+ ) |
| 12 | rpdivcl | |- ( ( R e. RR+ /\ ( M + 1 ) e. RR+ ) -> ( R / ( M + 1 ) ) e. RR+ ) |
|
| 13 | 10 11 12 | syl2anr | |- ( ( ph /\ R e. RR+ ) -> ( R / ( M + 1 ) ) e. RR+ ) |
| 14 | eqidd | |- ( ( ( ph /\ R e. RR+ ) /\ k e. NN0 ) -> ( seq 0 ( + , A ) ` k ) = ( seq 0 ( + , A ) ` k ) ) |
|
| 15 | 7 | adantr | |- ( ( ph /\ R e. RR+ ) -> seq 0 ( + , A ) ~~> 0 ) |
| 16 | 8 9 13 14 15 | climi0 | |- ( ( ph /\ R e. RR+ ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) |
| 17 | 13 | adantr | |- ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> ( R / ( M + 1 ) ) e. RR+ ) |
| 18 | fzfid | |- ( ph -> ( 0 ... ( j - 1 ) ) e. Fin ) |
|
| 19 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 20 | 1 | ffvelcdmda | |- ( ( ph /\ w e. NN0 ) -> ( A ` w ) e. CC ) |
| 21 | 8 19 20 | serf | |- ( ph -> seq 0 ( + , A ) : NN0 --> CC ) |
| 22 | elfznn0 | |- ( i e. ( 0 ... ( j - 1 ) ) -> i e. NN0 ) |
|
| 23 | ffvelcdm | |- ( ( seq 0 ( + , A ) : NN0 --> CC /\ i e. NN0 ) -> ( seq 0 ( + , A ) ` i ) e. CC ) |
|
| 24 | 21 22 23 | syl2an | |- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( seq 0 ( + , A ) ` i ) e. CC ) |
| 25 | 24 | abscld | |- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR ) |
| 26 | 18 25 | fsumrecl | |- ( ph -> sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR ) |
| 27 | 26 | ad2antrr | |- ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR ) |
| 28 | 24 | absge0d | |- ( ( ph /\ i e. ( 0 ... ( j - 1 ) ) ) -> 0 <_ ( abs ` ( seq 0 ( + , A ) ` i ) ) ) |
| 29 | 18 25 28 | fsumge0 | |- ( ph -> 0 <_ sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) ) |
| 30 | 29 | ad2antrr | |- ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> 0 <_ sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) ) |
| 31 | 27 30 | ge0p1rpd | |- ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) e. RR+ ) |
| 32 | 17 31 | rpdivcld | |- ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) e. RR+ ) |
| 33 | 1 2 3 4 5 | abelthlem2 | |- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 34 | 33 | simpld | |- ( ph -> 1 e. S ) |
| 35 | oveq1 | |- ( x = 1 -> ( x ^ n ) = ( 1 ^ n ) ) |
|
| 36 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 37 | 1exp | |- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
|
| 38 | 36 37 | syl | |- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 39 | 35 38 | sylan9eq | |- ( ( x = 1 /\ n e. NN0 ) -> ( x ^ n ) = 1 ) |
| 40 | 39 | oveq2d | |- ( ( x = 1 /\ n e. NN0 ) -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` n ) x. 1 ) ) |
| 41 | 40 | sumeq2dv | |- ( x = 1 -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ n e. NN0 ( ( A ` n ) x. 1 ) ) |
| 42 | sumex | |- sum_ n e. NN0 ( ( A ` n ) x. 1 ) e. _V |
|
| 43 | 41 6 42 | fvmpt | |- ( 1 e. S -> ( F ` 1 ) = sum_ n e. NN0 ( ( A ` n ) x. 1 ) ) |
| 44 | 34 43 | syl | |- ( ph -> ( F ` 1 ) = sum_ n e. NN0 ( ( A ` n ) x. 1 ) ) |
| 45 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
| 46 | 45 | mulridd | |- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) = ( A ` n ) ) |
| 47 | 46 | eqcomd | |- ( ( ph /\ n e. NN0 ) -> ( A ` n ) = ( ( A ` n ) x. 1 ) ) |
| 48 | 46 45 | eqeltrd | |- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) e. CC ) |
| 49 | 8 19 47 48 7 | isumclim | |- ( ph -> sum_ n e. NN0 ( ( A ` n ) x. 1 ) = 0 ) |
| 50 | 44 49 | eqtrd | |- ( ph -> ( F ` 1 ) = 0 ) |
| 51 | 50 | adantr | |- ( ( ph /\ y e. S ) -> ( F ` 1 ) = 0 ) |
| 52 | 51 | oveq1d | |- ( ( ph /\ y e. S ) -> ( ( F ` 1 ) - ( F ` y ) ) = ( 0 - ( F ` y ) ) ) |
| 53 | df-neg | |- -u ( F ` y ) = ( 0 - ( F ` y ) ) |
|
| 54 | 52 53 | eqtr4di | |- ( ( ph /\ y e. S ) -> ( ( F ` 1 ) - ( F ` y ) ) = -u ( F ` y ) ) |
| 55 | 54 | fveq2d | |- ( ( ph /\ y e. S ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) = ( abs ` -u ( F ` y ) ) ) |
| 56 | 1 2 3 4 5 6 | abelthlem4 | |- ( ph -> F : S --> CC ) |
| 57 | 56 | ffvelcdmda | |- ( ( ph /\ y e. S ) -> ( F ` y ) e. CC ) |
| 58 | 57 | absnegd | |- ( ( ph /\ y e. S ) -> ( abs ` -u ( F ` y ) ) = ( abs ` ( F ` y ) ) ) |
| 59 | 55 58 | eqtrd | |- ( ( ph /\ y e. S ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) = ( abs ` ( F ` y ) ) ) |
| 60 | 59 | adantlr | |- ( ( ( ph /\ R e. RR+ ) /\ y e. S ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) = ( abs ` ( F ` y ) ) ) |
| 61 | 60 | ad2ant2r | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) = ( abs ` ( F ` y ) ) ) |
| 62 | fveq2 | |- ( y = 1 -> ( F ` y ) = ( F ` 1 ) ) |
|
| 63 | 62 50 | sylan9eqr | |- ( ( ph /\ y = 1 ) -> ( F ` y ) = 0 ) |
| 64 | 63 | abs00bd | |- ( ( ph /\ y = 1 ) -> ( abs ` ( F ` y ) ) = 0 ) |
| 65 | 64 | ad5ant15 | |- ( ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) /\ y = 1 ) -> ( abs ` ( F ` y ) ) = 0 ) |
| 66 | simpllr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> R e. RR+ ) |
|
| 67 | 66 | rpgt0d | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> 0 < R ) |
| 68 | 67 | adantr | |- ( ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) /\ y = 1 ) -> 0 < R ) |
| 69 | 65 68 | eqbrtrd | |- ( ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) /\ y = 1 ) -> ( abs ` ( F ` y ) ) < R ) |
| 70 | 1 | ad3antrrr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> A : NN0 --> CC ) |
| 71 | 2 | ad3antrrr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> seq 0 ( + , A ) e. dom ~~> ) |
| 72 | 3 | ad3antrrr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> M e. RR ) |
| 73 | 4 | ad3antrrr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> 0 <_ M ) |
| 74 | 7 | ad3antrrr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> seq 0 ( + , A ) ~~> 0 ) |
| 75 | simprll | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> y e. S ) |
|
| 76 | simprr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> y =/= 1 ) |
|
| 77 | eldifsn | |- ( y e. ( S \ { 1 } ) <-> ( y e. S /\ y =/= 1 ) ) |
|
| 78 | 75 76 77 | sylanbrc | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> y e. ( S \ { 1 } ) ) |
| 79 | 13 | ad2antrr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( R / ( M + 1 ) ) e. RR+ ) |
| 80 | simplrl | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> j e. NN0 ) |
|
| 81 | simplrr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) |
|
| 82 | 2fveq3 | |- ( k = m -> ( abs ` ( seq 0 ( + , A ) ` k ) ) = ( abs ` ( seq 0 ( + , A ) ` m ) ) ) |
|
| 83 | 82 | breq1d | |- ( k = m -> ( ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) <-> ( abs ` ( seq 0 ( + , A ) ` m ) ) < ( R / ( M + 1 ) ) ) ) |
| 84 | 83 | cbvralvw | |- ( A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) <-> A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < ( R / ( M + 1 ) ) ) |
| 85 | 81 84 | sylib | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < ( R / ( M + 1 ) ) ) |
| 86 | simprlr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) |
|
| 87 | 2fveq3 | |- ( i = n -> ( abs ` ( seq 0 ( + , A ) ` i ) ) = ( abs ` ( seq 0 ( + , A ) ` n ) ) ) |
|
| 88 | 87 | cbvsumv | |- sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) = sum_ n e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) |
| 89 | 88 | oveq1i | |- ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) = ( sum_ n e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) |
| 90 | 89 | oveq2i | |- ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) = ( ( R / ( M + 1 ) ) / ( sum_ n e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) |
| 91 | 86 90 | breqtrdi | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ n e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` n ) ) + 1 ) ) ) |
| 92 | 70 71 72 73 5 6 74 78 79 80 85 91 | abelthlem7 | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( abs ` ( F ` y ) ) < ( ( M + 1 ) x. ( R / ( M + 1 ) ) ) ) |
| 93 | rpcn | |- ( R e. RR+ -> R e. CC ) |
|
| 94 | 93 | adantl | |- ( ( ph /\ R e. RR+ ) -> R e. CC ) |
| 95 | 11 | adantr | |- ( ( ph /\ R e. RR+ ) -> ( M + 1 ) e. RR+ ) |
| 96 | 95 | rpcnd | |- ( ( ph /\ R e. RR+ ) -> ( M + 1 ) e. CC ) |
| 97 | 95 | rpne0d | |- ( ( ph /\ R e. RR+ ) -> ( M + 1 ) =/= 0 ) |
| 98 | 94 96 97 | divcan2d | |- ( ( ph /\ R e. RR+ ) -> ( ( M + 1 ) x. ( R / ( M + 1 ) ) ) = R ) |
| 99 | 98 | ad2antrr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( ( M + 1 ) x. ( R / ( M + 1 ) ) ) = R ) |
| 100 | 92 99 | breqtrd | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) /\ y =/= 1 ) ) -> ( abs ` ( F ` y ) ) < R ) |
| 101 | 100 | anassrs | |- ( ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) /\ y =/= 1 ) -> ( abs ` ( F ` y ) ) < R ) |
| 102 | 69 101 | pm2.61dane | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> ( abs ` ( F ` y ) ) < R ) |
| 103 | 61 102 | eqbrtrd | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ ( y e. S /\ ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) |
| 104 | 103 | expr | |- ( ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) /\ y e. S ) -> ( ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |
| 105 | 104 | ralrimiva | |- ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> A. y e. S ( ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |
| 106 | breq2 | |- ( w = ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) -> ( ( abs ` ( 1 - y ) ) < w <-> ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) ) ) |
|
| 107 | 106 | rspceaimv | |- ( ( ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) e. RR+ /\ A. y e. S ( ( abs ` ( 1 - y ) ) < ( ( R / ( M + 1 ) ) / ( sum_ i e. ( 0 ... ( j - 1 ) ) ( abs ` ( seq 0 ( + , A ) ` i ) ) + 1 ) ) -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |
| 108 | 32 105 107 | syl2anc | |- ( ( ( ph /\ R e. RR+ ) /\ ( j e. NN0 /\ A. k e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` k ) ) < ( R / ( M + 1 ) ) ) ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |
| 109 | 16 108 | rexlimddv | |- ( ( ph /\ R e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |