This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of two numbers whose difference is positive. (Contributed by NM, 17-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | posdif | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
|
| 2 | 1 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B - A ) e. RR ) |
| 3 | simpl | |- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
|
| 4 | ltaddpos | |- ( ( ( B - A ) e. RR /\ A e. RR ) -> ( 0 < ( B - A ) <-> A < ( A + ( B - A ) ) ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( A e. RR /\ B e. RR ) -> ( 0 < ( B - A ) <-> A < ( A + ( B - A ) ) ) ) |
| 6 | recn | |- ( A e. RR -> A e. CC ) |
|
| 7 | recn | |- ( B e. RR -> B e. CC ) |
|
| 8 | pncan3 | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( B - A ) ) = B ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + ( B - A ) ) = B ) |
| 10 | 9 | breq2d | |- ( ( A e. RR /\ B e. RR ) -> ( A < ( A + ( B - A ) ) <-> A < B ) ) |
| 11 | 5 10 | bitr2d | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> 0 < ( B - A ) ) ) |