This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absexp | |- ( ( A e. CC /\ N e. NN0 ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) |
|
| 2 | 1 | fveq2d | |- ( j = 0 -> ( abs ` ( A ^ j ) ) = ( abs ` ( A ^ 0 ) ) ) |
| 3 | oveq2 | |- ( j = 0 -> ( ( abs ` A ) ^ j ) = ( ( abs ` A ) ^ 0 ) ) |
|
| 4 | 2 3 | eqeq12d | |- ( j = 0 -> ( ( abs ` ( A ^ j ) ) = ( ( abs ` A ) ^ j ) <-> ( abs ` ( A ^ 0 ) ) = ( ( abs ` A ) ^ 0 ) ) ) |
| 5 | oveq2 | |- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
|
| 6 | 5 | fveq2d | |- ( j = k -> ( abs ` ( A ^ j ) ) = ( abs ` ( A ^ k ) ) ) |
| 7 | oveq2 | |- ( j = k -> ( ( abs ` A ) ^ j ) = ( ( abs ` A ) ^ k ) ) |
|
| 8 | 6 7 | eqeq12d | |- ( j = k -> ( ( abs ` ( A ^ j ) ) = ( ( abs ` A ) ^ j ) <-> ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) ) |
| 9 | oveq2 | |- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
|
| 10 | 9 | fveq2d | |- ( j = ( k + 1 ) -> ( abs ` ( A ^ j ) ) = ( abs ` ( A ^ ( k + 1 ) ) ) ) |
| 11 | oveq2 | |- ( j = ( k + 1 ) -> ( ( abs ` A ) ^ j ) = ( ( abs ` A ) ^ ( k + 1 ) ) ) |
|
| 12 | 10 11 | eqeq12d | |- ( j = ( k + 1 ) -> ( ( abs ` ( A ^ j ) ) = ( ( abs ` A ) ^ j ) <-> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( abs ` A ) ^ ( k + 1 ) ) ) ) |
| 13 | oveq2 | |- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
|
| 14 | 13 | fveq2d | |- ( j = N -> ( abs ` ( A ^ j ) ) = ( abs ` ( A ^ N ) ) ) |
| 15 | oveq2 | |- ( j = N -> ( ( abs ` A ) ^ j ) = ( ( abs ` A ) ^ N ) ) |
|
| 16 | 14 15 | eqeq12d | |- ( j = N -> ( ( abs ` ( A ^ j ) ) = ( ( abs ` A ) ^ j ) <-> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) ) |
| 17 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 18 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 19 | 18 | fveq2d | |- ( A e. CC -> ( abs ` ( A ^ 0 ) ) = ( abs ` 1 ) ) |
| 20 | abscl | |- ( A e. CC -> ( abs ` A ) e. RR ) |
|
| 21 | 20 | recnd | |- ( A e. CC -> ( abs ` A ) e. CC ) |
| 22 | 21 | exp0d | |- ( A e. CC -> ( ( abs ` A ) ^ 0 ) = 1 ) |
| 23 | 17 19 22 | 3eqtr4a | |- ( A e. CC -> ( abs ` ( A ^ 0 ) ) = ( ( abs ` A ) ^ 0 ) ) |
| 24 | oveq1 | |- ( ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) -> ( ( abs ` ( A ^ k ) ) x. ( abs ` A ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
|
| 25 | 24 | adantl | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) -> ( ( abs ` ( A ^ k ) ) x. ( abs ` A ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
| 26 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 27 | 26 | fveq2d | |- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( abs ` ( ( A ^ k ) x. A ) ) ) |
| 28 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 29 | simpl | |- ( ( A e. CC /\ k e. NN0 ) -> A e. CC ) |
|
| 30 | absmul | |- ( ( ( A ^ k ) e. CC /\ A e. CC ) -> ( abs ` ( ( A ^ k ) x. A ) ) = ( ( abs ` ( A ^ k ) ) x. ( abs ` A ) ) ) |
|
| 31 | 28 29 30 | syl2anc | |- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( ( A ^ k ) x. A ) ) = ( ( abs ` ( A ^ k ) ) x. ( abs ` A ) ) ) |
| 32 | 27 31 | eqtrd | |- ( ( A e. CC /\ k e. NN0 ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( abs ` ( A ^ k ) ) x. ( abs ` A ) ) ) |
| 33 | 32 | adantr | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( abs ` ( A ^ k ) ) x. ( abs ` A ) ) ) |
| 34 | expp1 | |- ( ( ( abs ` A ) e. CC /\ k e. NN0 ) -> ( ( abs ` A ) ^ ( k + 1 ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
|
| 35 | 21 34 | sylan | |- ( ( A e. CC /\ k e. NN0 ) -> ( ( abs ` A ) ^ ( k + 1 ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
| 36 | 35 | adantr | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) -> ( ( abs ` A ) ^ ( k + 1 ) ) = ( ( ( abs ` A ) ^ k ) x. ( abs ` A ) ) ) |
| 37 | 25 33 36 | 3eqtr4d | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( abs ` ( A ^ k ) ) = ( ( abs ` A ) ^ k ) ) -> ( abs ` ( A ^ ( k + 1 ) ) ) = ( ( abs ` A ) ^ ( k + 1 ) ) ) |
| 38 | 4 8 12 16 23 37 | nn0indd | |- ( ( A e. CC /\ N e. NN0 ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |