This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
||
| Assertion | abelthlem5 | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 7 | abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
|
| 8 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 9 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 10 | 1rp | |- 1 e. RR+ |
|
| 11 | 10 | a1i | |- ( ph -> 1 e. RR+ ) |
| 12 | eqidd | |- ( ( ph /\ m e. NN0 ) -> ( seq 0 ( + , A ) ` m ) = ( seq 0 ( + , A ) ` m ) ) |
|
| 13 | 8 9 11 12 7 | climi0 | |- ( ph -> E. j e. NN0 A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) |
| 14 | 13 | adantr | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> E. j e. NN0 A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) |
| 15 | simprl | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> j e. NN0 ) |
|
| 16 | oveq2 | |- ( n = i -> ( ( abs ` X ) ^ n ) = ( ( abs ` X ) ^ i ) ) |
|
| 17 | eqid | |- ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) = ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) |
|
| 18 | ovex | |- ( ( abs ` X ) ^ i ) e. _V |
|
| 19 | 16 17 18 | fvmpt | |- ( i e. NN0 -> ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) = ( ( abs ` X ) ^ i ) ) |
| 20 | 19 | adantl | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) = ( ( abs ` X ) ^ i ) ) |
| 21 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 22 | 0cn | |- 0 e. CC |
|
| 23 | 1xr | |- 1 e. RR* |
|
| 24 | blssm | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ 1 e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) |
|
| 25 | 21 22 23 24 | mp3an | |- ( 0 ( ball ` ( abs o. - ) ) 1 ) C_ CC |
| 26 | simplr | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
|
| 27 | 25 26 | sselid | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> X e. CC ) |
| 28 | 27 | abscld | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` X ) e. RR ) |
| 29 | reexpcl | |- ( ( ( abs ` X ) e. RR /\ i e. NN0 ) -> ( ( abs ` X ) ^ i ) e. RR ) |
|
| 30 | 28 29 | sylan | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( abs ` X ) ^ i ) e. RR ) |
| 31 | 20 30 | eqeltrd | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) e. RR ) |
| 32 | fveq2 | |- ( k = i -> ( seq 0 ( + , A ) ` k ) = ( seq 0 ( + , A ) ` i ) ) |
|
| 33 | oveq2 | |- ( k = i -> ( X ^ k ) = ( X ^ i ) ) |
|
| 34 | 32 33 | oveq12d | |- ( k = i -> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) |
| 35 | eqid | |- ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) = ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) |
|
| 36 | ovex | |- ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) e. _V |
|
| 37 | 34 35 36 | fvmpt | |- ( i e. NN0 -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) |
| 38 | 37 | adantl | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) |
| 39 | 1 | ffvelcdmda | |- ( ( ph /\ x e. NN0 ) -> ( A ` x ) e. CC ) |
| 40 | 8 9 39 | serf | |- ( ph -> seq 0 ( + , A ) : NN0 --> CC ) |
| 41 | 40 | ad2antrr | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> seq 0 ( + , A ) : NN0 --> CC ) |
| 42 | 41 | ffvelcdmda | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( seq 0 ( + , A ) ` i ) e. CC ) |
| 43 | expcl | |- ( ( X e. CC /\ i e. NN0 ) -> ( X ^ i ) e. CC ) |
|
| 44 | 27 43 | sylan | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( X ^ i ) e. CC ) |
| 45 | 42 44 | mulcld | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) e. CC ) |
| 46 | 38 45 | eqeltrd | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) e. CC ) |
| 47 | 28 | recnd | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` X ) e. CC ) |
| 48 | absidm | |- ( X e. CC -> ( abs ` ( abs ` X ) ) = ( abs ` X ) ) |
|
| 49 | 27 48 | syl | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` ( abs ` X ) ) = ( abs ` X ) ) |
| 50 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 51 | 50 | cnmetdval | |- ( ( X e. CC /\ 0 e. CC ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) ) |
| 52 | 27 22 51 | sylancl | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` ( X - 0 ) ) ) |
| 53 | 27 | subid1d | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X - 0 ) = X ) |
| 54 | 53 | fveq2d | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` ( X - 0 ) ) = ( abs ` X ) ) |
| 55 | 52 54 | eqtrd | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X ( abs o. - ) 0 ) = ( abs ` X ) ) |
| 56 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ X e. CC ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
|
| 57 | 21 23 56 | mpanl12 | |- ( ( 0 e. CC /\ X e. CC ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
| 58 | 22 27 57 | sylancr | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( X ( abs o. - ) 0 ) < 1 ) ) |
| 59 | 26 58 | mpbid | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( X ( abs o. - ) 0 ) < 1 ) |
| 60 | 55 59 | eqbrtrrd | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` X ) < 1 ) |
| 61 | 49 60 | eqbrtrd | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> ( abs ` ( abs ` X ) ) < 1 ) |
| 62 | 47 61 20 | geolim | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( abs ` X ) ) ) ) |
| 63 | climrel | |- Rel ~~> |
|
| 64 | 63 | releldmi | |- ( seq 0 ( + , ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ) ~~> ( 1 / ( 1 - ( abs ` X ) ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ) e. dom ~~> ) |
| 65 | 62 64 | syl | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ) e. dom ~~> ) |
| 66 | 1red | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> 1 e. RR ) |
|
| 67 | 41 | adantr | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> seq 0 ( + , A ) : NN0 --> CC ) |
| 68 | eluznn0 | |- ( ( j e. NN0 /\ i e. ( ZZ>= ` j ) ) -> i e. NN0 ) |
|
| 69 | 15 68 | sylan | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> i e. NN0 ) |
| 70 | 67 69 | ffvelcdmd | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( seq 0 ( + , A ) ` i ) e. CC ) |
| 71 | 69 44 | syldan | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( X ^ i ) e. CC ) |
| 72 | 70 71 | absmuld | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( abs ` ( X ^ i ) ) ) ) |
| 73 | 27 | adantr | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> X e. CC ) |
| 74 | 73 69 | absexpd | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( X ^ i ) ) = ( ( abs ` X ) ^ i ) ) |
| 75 | 74 | oveq2d | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( abs ` ( X ^ i ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( ( abs ` X ) ^ i ) ) ) |
| 76 | 72 75 | eqtrd | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) = ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( ( abs ` X ) ^ i ) ) ) |
| 77 | 70 | abscld | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR ) |
| 78 | 1red | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> 1 e. RR ) |
|
| 79 | 69 30 | syldan | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` X ) ^ i ) e. RR ) |
| 80 | 71 | absge0d | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> 0 <_ ( abs ` ( X ^ i ) ) ) |
| 81 | 80 74 | breqtrd | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> 0 <_ ( ( abs ` X ) ^ i ) ) |
| 82 | simprr | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) |
|
| 83 | 2fveq3 | |- ( m = i -> ( abs ` ( seq 0 ( + , A ) ` m ) ) = ( abs ` ( seq 0 ( + , A ) ` i ) ) ) |
|
| 84 | 83 | breq1d | |- ( m = i -> ( ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 <-> ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 ) ) |
| 85 | 84 | rspccva | |- ( ( A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 ) |
| 86 | 82 85 | sylan | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 ) |
| 87 | 1re | |- 1 e. RR |
|
| 88 | ltle | |- ( ( ( abs ` ( seq 0 ( + , A ) ` i ) ) e. RR /\ 1 e. RR ) -> ( ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 -> ( abs ` ( seq 0 ( + , A ) ` i ) ) <_ 1 ) ) |
|
| 89 | 77 87 88 | sylancl | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` ( seq 0 ( + , A ) ` i ) ) < 1 -> ( abs ` ( seq 0 ( + , A ) ` i ) ) <_ 1 ) ) |
| 90 | 86 89 | mpd | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( seq 0 ( + , A ) ` i ) ) <_ 1 ) |
| 91 | 77 78 79 81 90 | lemul1ad | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( abs ` ( seq 0 ( + , A ) ` i ) ) x. ( ( abs ` X ) ^ i ) ) <_ ( 1 x. ( ( abs ` X ) ^ i ) ) ) |
| 92 | 76 91 | eqbrtrd | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) <_ ( 1 x. ( ( abs ` X ) ^ i ) ) ) |
| 93 | 69 37 | syl | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) |
| 94 | 93 | fveq2d | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) ) = ( abs ` ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) ) |
| 95 | 69 19 | syl | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) = ( ( abs ` X ) ^ i ) ) |
| 96 | 95 | oveq2d | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( 1 x. ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) ) = ( 1 x. ( ( abs ` X ) ^ i ) ) ) |
| 97 | 92 94 96 | 3brtr4d | |- ( ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) /\ i e. ( ZZ>= ` j ) ) -> ( abs ` ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) ) <_ ( 1 x. ( ( n e. NN0 |-> ( ( abs ` X ) ^ n ) ) ` i ) ) ) |
| 98 | 8 15 31 46 65 66 97 | cvgcmpce | |- ( ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) /\ ( j e. NN0 /\ A. m e. ( ZZ>= ` j ) ( abs ` ( seq 0 ( + , A ) ` m ) ) < 1 ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) |
| 99 | 14 98 | rexlimddv | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) |