This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmuldiv | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < B <-> A < ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. RR ) |
|
| 2 | simp3l | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. RR ) |
|
| 3 | 1 2 | remulcld | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A x. C ) e. RR ) |
| 4 | ltdiv1 | |- ( ( ( A x. C ) e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < B <-> ( ( A x. C ) / C ) < ( B / C ) ) ) |
|
| 5 | 3 4 | syld3an1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < B <-> ( ( A x. C ) / C ) < ( B / C ) ) ) |
| 6 | 1 | recnd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> A e. CC ) |
| 7 | 2 | recnd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. CC ) |
| 8 | simp3r | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> 0 < C ) |
|
| 9 | 8 | gt0ne0d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C =/= 0 ) |
| 10 | 6 7 9 | divcan4d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) / C ) = A ) |
| 11 | 10 | breq1d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( ( A x. C ) / C ) < ( B / C ) <-> A < ( B / C ) ) ) |
| 12 | 5 11 | bitrd | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A x. C ) < B <-> A < ( B / C ) ) ) |