This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
||
| abelthlem6.1 | |- ( ph -> X e. ( S \ { 1 } ) ) |
||
| Assertion | abelthlem6 | |- ( ph -> ( F ` X ) = ( ( 1 - X ) x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 7 | abelth.7 | |- ( ph -> seq 0 ( + , A ) ~~> 0 ) |
|
| 8 | abelthlem6.1 | |- ( ph -> X e. ( S \ { 1 } ) ) |
|
| 9 | 8 | eldifad | |- ( ph -> X e. S ) |
| 10 | oveq1 | |- ( x = X -> ( x ^ n ) = ( X ^ n ) ) |
|
| 11 | 10 | oveq2d | |- ( x = X -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` n ) x. ( X ^ n ) ) ) |
| 12 | 11 | sumeq2sdv | |- ( x = X -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ n e. NN0 ( ( A ` n ) x. ( X ^ n ) ) ) |
| 13 | sumex | |- sum_ n e. NN0 ( ( A ` n ) x. ( X ^ n ) ) e. _V |
|
| 14 | 12 6 13 | fvmpt | |- ( X e. S -> ( F ` X ) = sum_ n e. NN0 ( ( A ` n ) x. ( X ^ n ) ) ) |
| 15 | 9 14 | syl | |- ( ph -> ( F ` X ) = sum_ n e. NN0 ( ( A ` n ) x. ( X ^ n ) ) ) |
| 16 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 17 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 18 | fveq2 | |- ( k = n -> ( A ` k ) = ( A ` n ) ) |
|
| 19 | oveq2 | |- ( k = n -> ( X ^ k ) = ( X ^ n ) ) |
|
| 20 | 18 19 | oveq12d | |- ( k = n -> ( ( A ` k ) x. ( X ^ k ) ) = ( ( A ` n ) x. ( X ^ n ) ) ) |
| 21 | eqid | |- ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) = ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) |
|
| 22 | ovex | |- ( ( A ` n ) x. ( X ^ n ) ) e. _V |
|
| 23 | 20 21 22 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( A ` n ) x. ( X ^ n ) ) ) |
| 24 | 23 | adantl | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( A ` n ) x. ( X ^ n ) ) ) |
| 25 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
| 26 | 5 | ssrab3 | |- S C_ CC |
| 27 | 26 9 | sselid | |- ( ph -> X e. CC ) |
| 28 | expcl | |- ( ( X e. CC /\ n e. NN0 ) -> ( X ^ n ) e. CC ) |
|
| 29 | 27 28 | sylan | |- ( ( ph /\ n e. NN0 ) -> ( X ^ n ) e. CC ) |
| 30 | 25 29 | mulcld | |- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. ( X ^ n ) ) e. CC ) |
| 31 | fveq2 | |- ( k = n -> ( seq 0 ( + , A ) ` k ) = ( seq 0 ( + , A ) ` n ) ) |
|
| 32 | 31 19 | oveq12d | |- ( k = n -> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) = ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 33 | eqid | |- ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) = ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) |
|
| 34 | ovex | |- ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. _V |
|
| 35 | 32 33 34 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 36 | 35 | adantl | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 37 | 16 17 25 | serf | |- ( ph -> seq 0 ( + , A ) : NN0 --> CC ) |
| 38 | 37 | ffvelcdmda | |- ( ( ph /\ n e. NN0 ) -> ( seq 0 ( + , A ) ` n ) e. CC ) |
| 39 | 38 29 | mulcld | |- ( ( ph /\ n e. NN0 ) -> ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. CC ) |
| 40 | 1 2 3 4 5 | abelthlem2 | |- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 41 | 40 | simprd | |- ( ph -> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 42 | 41 8 | sseldd | |- ( ph -> X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 43 | 1 2 3 4 5 6 7 | abelthlem5 | |- ( ( ph /\ X e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) |
| 44 | 42 43 | mpdan | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. dom ~~> ) |
| 45 | 16 17 36 39 44 | isumclim2 | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ~~> sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 46 | seqex | |- seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ) e. _V |
|
| 47 | 46 | a1i | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ) e. _V ) |
| 48 | 0nn0 | |- 0 e. NN0 |
|
| 49 | 48 | a1i | |- ( ph -> 0 e. NN0 ) |
| 50 | oveq1 | |- ( k = i -> ( k - 1 ) = ( i - 1 ) ) |
|
| 51 | 50 | oveq2d | |- ( k = i -> ( 0 ... ( k - 1 ) ) = ( 0 ... ( i - 1 ) ) ) |
| 52 | 51 | sumeq1d | |- ( k = i -> sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) = sum_ m e. ( 0 ... ( i - 1 ) ) ( A ` m ) ) |
| 53 | oveq2 | |- ( k = i -> ( X ^ k ) = ( X ^ i ) ) |
|
| 54 | 52 53 | oveq12d | |- ( k = i -> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) = ( sum_ m e. ( 0 ... ( i - 1 ) ) ( A ` m ) x. ( X ^ i ) ) ) |
| 55 | eqid | |- ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) = ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) |
|
| 56 | ovex | |- ( sum_ m e. ( 0 ... ( i - 1 ) ) ( A ` m ) x. ( X ^ i ) ) e. _V |
|
| 57 | 54 55 56 | fvmpt | |- ( i e. NN0 -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` i ) = ( sum_ m e. ( 0 ... ( i - 1 ) ) ( A ` m ) x. ( X ^ i ) ) ) |
| 58 | 57 | adantl | |- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` i ) = ( sum_ m e. ( 0 ... ( i - 1 ) ) ( A ` m ) x. ( X ^ i ) ) ) |
| 59 | fzfid | |- ( ( ph /\ i e. NN0 ) -> ( 0 ... ( i - 1 ) ) e. Fin ) |
|
| 60 | 1 | adantr | |- ( ( ph /\ i e. NN0 ) -> A : NN0 --> CC ) |
| 61 | elfznn0 | |- ( m e. ( 0 ... ( i - 1 ) ) -> m e. NN0 ) |
|
| 62 | ffvelcdm | |- ( ( A : NN0 --> CC /\ m e. NN0 ) -> ( A ` m ) e. CC ) |
|
| 63 | 60 61 62 | syl2an | |- ( ( ( ph /\ i e. NN0 ) /\ m e. ( 0 ... ( i - 1 ) ) ) -> ( A ` m ) e. CC ) |
| 64 | 59 63 | fsumcl | |- ( ( ph /\ i e. NN0 ) -> sum_ m e. ( 0 ... ( i - 1 ) ) ( A ` m ) e. CC ) |
| 65 | expcl | |- ( ( X e. CC /\ i e. NN0 ) -> ( X ^ i ) e. CC ) |
|
| 66 | 27 65 | sylan | |- ( ( ph /\ i e. NN0 ) -> ( X ^ i ) e. CC ) |
| 67 | 64 66 | mulcld | |- ( ( ph /\ i e. NN0 ) -> ( sum_ m e. ( 0 ... ( i - 1 ) ) ( A ` m ) x. ( X ^ i ) ) e. CC ) |
| 68 | 58 67 | eqeltrd | |- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` i ) e. CC ) |
| 69 | 17 | peano2zd | |- ( ph -> ( 0 + 1 ) e. ZZ ) |
| 70 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 71 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 72 | 71 | fveq2i | |- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 73 | 70 72 | eqtri | |- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 74 | 73 | eleq2i | |- ( n e. NN <-> n e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 75 | nnm1nn0 | |- ( n e. NN -> ( n - 1 ) e. NN0 ) |
|
| 76 | 75 | adantl | |- ( ( ph /\ n e. NN ) -> ( n - 1 ) e. NN0 ) |
| 77 | fveq2 | |- ( k = ( n - 1 ) -> ( seq 0 ( + , A ) ` k ) = ( seq 0 ( + , A ) ` ( n - 1 ) ) ) |
|
| 78 | oveq2 | |- ( k = ( n - 1 ) -> ( X ^ k ) = ( X ^ ( n - 1 ) ) ) |
|
| 79 | 77 78 | oveq12d | |- ( k = ( n - 1 ) -> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) = ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X ^ ( n - 1 ) ) ) ) |
| 80 | 79 | oveq2d | |- ( k = ( n - 1 ) -> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) = ( X x. ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X ^ ( n - 1 ) ) ) ) ) |
| 81 | eqid | |- ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) = ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) |
|
| 82 | ovex | |- ( X x. ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X ^ ( n - 1 ) ) ) ) e. _V |
|
| 83 | 80 81 82 | fvmpt | |- ( ( n - 1 ) e. NN0 -> ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` ( n - 1 ) ) = ( X x. ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X ^ ( n - 1 ) ) ) ) ) |
| 84 | 76 83 | syl | |- ( ( ph /\ n e. NN ) -> ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` ( n - 1 ) ) = ( X x. ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X ^ ( n - 1 ) ) ) ) ) |
| 85 | ax-1cn | |- 1 e. CC |
|
| 86 | nncn | |- ( n e. NN -> n e. CC ) |
|
| 87 | 86 | adantl | |- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 88 | nn0ex | |- NN0 e. _V |
|
| 89 | 88 | mptex | |- ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) e. _V |
| 90 | 89 | shftval | |- ( ( 1 e. CC /\ n e. CC ) -> ( ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) shift 1 ) ` n ) = ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` ( n - 1 ) ) ) |
| 91 | 85 87 90 | sylancr | |- ( ( ph /\ n e. NN ) -> ( ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) shift 1 ) ` n ) = ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` ( n - 1 ) ) ) |
| 92 | eqidd | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n - 1 ) ) ) -> ( A ` m ) = ( A ` m ) ) |
|
| 93 | 76 16 | eleqtrdi | |- ( ( ph /\ n e. NN ) -> ( n - 1 ) e. ( ZZ>= ` 0 ) ) |
| 94 | 1 | adantr | |- ( ( ph /\ n e. NN ) -> A : NN0 --> CC ) |
| 95 | elfznn0 | |- ( m e. ( 0 ... ( n - 1 ) ) -> m e. NN0 ) |
|
| 96 | 94 95 62 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n - 1 ) ) ) -> ( A ` m ) e. CC ) |
| 97 | 92 93 96 | fsumser | |- ( ( ph /\ n e. NN ) -> sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) = ( seq 0 ( + , A ) ` ( n - 1 ) ) ) |
| 98 | expm1t | |- ( ( X e. CC /\ n e. NN ) -> ( X ^ n ) = ( ( X ^ ( n - 1 ) ) x. X ) ) |
|
| 99 | 27 98 | sylan | |- ( ( ph /\ n e. NN ) -> ( X ^ n ) = ( ( X ^ ( n - 1 ) ) x. X ) ) |
| 100 | 27 | adantr | |- ( ( ph /\ n e. NN ) -> X e. CC ) |
| 101 | expcl | |- ( ( X e. CC /\ ( n - 1 ) e. NN0 ) -> ( X ^ ( n - 1 ) ) e. CC ) |
|
| 102 | 27 75 101 | syl2an | |- ( ( ph /\ n e. NN ) -> ( X ^ ( n - 1 ) ) e. CC ) |
| 103 | 100 102 | mulcomd | |- ( ( ph /\ n e. NN ) -> ( X x. ( X ^ ( n - 1 ) ) ) = ( ( X ^ ( n - 1 ) ) x. X ) ) |
| 104 | 99 103 | eqtr4d | |- ( ( ph /\ n e. NN ) -> ( X ^ n ) = ( X x. ( X ^ ( n - 1 ) ) ) ) |
| 105 | 97 104 | oveq12d | |- ( ( ph /\ n e. NN ) -> ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) = ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X x. ( X ^ ( n - 1 ) ) ) ) ) |
| 106 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 107 | 106 | adantl | |- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
| 108 | oveq1 | |- ( k = n -> ( k - 1 ) = ( n - 1 ) ) |
|
| 109 | 108 | oveq2d | |- ( k = n -> ( 0 ... ( k - 1 ) ) = ( 0 ... ( n - 1 ) ) ) |
| 110 | 109 | sumeq1d | |- ( k = n -> sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) = sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) ) |
| 111 | 110 19 | oveq12d | |- ( k = n -> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) = ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) ) |
| 112 | ovex | |- ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) e. _V |
|
| 113 | 111 55 112 | fvmpt | |- ( n e. NN0 -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) = ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) ) |
| 114 | 107 113 | syl | |- ( ( ph /\ n e. NN ) -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) = ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) ) |
| 115 | ffvelcdm | |- ( ( seq 0 ( + , A ) : NN0 --> CC /\ ( n - 1 ) e. NN0 ) -> ( seq 0 ( + , A ) ` ( n - 1 ) ) e. CC ) |
|
| 116 | 37 75 115 | syl2an | |- ( ( ph /\ n e. NN ) -> ( seq 0 ( + , A ) ` ( n - 1 ) ) e. CC ) |
| 117 | 100 116 102 | mul12d | |- ( ( ph /\ n e. NN ) -> ( X x. ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X ^ ( n - 1 ) ) ) ) = ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X x. ( X ^ ( n - 1 ) ) ) ) ) |
| 118 | 105 114 117 | 3eqtr4d | |- ( ( ph /\ n e. NN ) -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) = ( X x. ( ( seq 0 ( + , A ) ` ( n - 1 ) ) x. ( X ^ ( n - 1 ) ) ) ) ) |
| 119 | 84 91 118 | 3eqtr4d | |- ( ( ph /\ n e. NN ) -> ( ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) shift 1 ) ` n ) = ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) ) |
| 120 | 74 119 | sylan2br | |- ( ( ph /\ n e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) shift 1 ) ` n ) = ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) ) |
| 121 | 69 120 | seqfeq | |- ( ph -> seq ( 0 + 1 ) ( + , ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) shift 1 ) ) = seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ) |
| 122 | fveq2 | |- ( k = i -> ( seq 0 ( + , A ) ` k ) = ( seq 0 ( + , A ) ` i ) ) |
|
| 123 | 122 53 | oveq12d | |- ( k = i -> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) |
| 124 | ovex | |- ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) e. _V |
|
| 125 | 123 33 124 | fvmpt | |- ( i e. NN0 -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) |
| 126 | 125 | adantl | |- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) = ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) |
| 127 | 37 | ffvelcdmda | |- ( ( ph /\ i e. NN0 ) -> ( seq 0 ( + , A ) ` i ) e. CC ) |
| 128 | 127 66 | mulcld | |- ( ( ph /\ i e. NN0 ) -> ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) e. CC ) |
| 129 | 126 128 | eqeltrd | |- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) e. CC ) |
| 130 | 123 | oveq2d | |- ( k = i -> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) = ( X x. ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) ) |
| 131 | ovex | |- ( X x. ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) e. _V |
|
| 132 | 130 81 131 | fvmpt | |- ( i e. NN0 -> ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` i ) = ( X x. ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) ) |
| 133 | 132 | adantl | |- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` i ) = ( X x. ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) ) |
| 134 | 126 | oveq2d | |- ( ( ph /\ i e. NN0 ) -> ( X x. ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) ) = ( X x. ( ( seq 0 ( + , A ) ` i ) x. ( X ^ i ) ) ) ) |
| 135 | 133 134 | eqtr4d | |- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` i ) = ( X x. ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` i ) ) ) |
| 136 | 16 17 27 45 129 135 | isermulc2 | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ) ~~> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 137 | 0z | |- 0 e. ZZ |
|
| 138 | 1z | |- 1 e. ZZ |
|
| 139 | 89 | isershft | |- ( ( 0 e. ZZ /\ 1 e. ZZ ) -> ( seq 0 ( + , ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ) ~~> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <-> seq ( 0 + 1 ) ( + , ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) shift 1 ) ) ~~> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 140 | 137 138 139 | mp2an | |- ( seq 0 ( + , ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ) ~~> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) <-> seq ( 0 + 1 ) ( + , ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) shift 1 ) ) ~~> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 141 | 136 140 | sylib | |- ( ph -> seq ( 0 + 1 ) ( + , ( ( k e. NN0 |-> ( X x. ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) shift 1 ) ) ~~> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 142 | 121 141 | eqbrtrrd | |- ( ph -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ~~> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 143 | 16 49 68 142 | clim2ser2 | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ~~> ( ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` 0 ) ) ) |
| 144 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` 0 ) ) |
|
| 145 | 137 144 | ax-mp | |- ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` 0 ) |
| 146 | oveq1 | |- ( k = 0 -> ( k - 1 ) = ( 0 - 1 ) ) |
|
| 147 | 146 | oveq2d | |- ( k = 0 -> ( 0 ... ( k - 1 ) ) = ( 0 ... ( 0 - 1 ) ) ) |
| 148 | risefall0lem | |- ( 0 ... ( 0 - 1 ) ) = (/) |
|
| 149 | 147 148 | eqtrdi | |- ( k = 0 -> ( 0 ... ( k - 1 ) ) = (/) ) |
| 150 | 149 | sumeq1d | |- ( k = 0 -> sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) = sum_ m e. (/) ( A ` m ) ) |
| 151 | sum0 | |- sum_ m e. (/) ( A ` m ) = 0 |
|
| 152 | 150 151 | eqtrdi | |- ( k = 0 -> sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) = 0 ) |
| 153 | oveq2 | |- ( k = 0 -> ( X ^ k ) = ( X ^ 0 ) ) |
|
| 154 | 152 153 | oveq12d | |- ( k = 0 -> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) = ( 0 x. ( X ^ 0 ) ) ) |
| 155 | ovex | |- ( 0 x. ( X ^ 0 ) ) e. _V |
|
| 156 | 154 55 155 | fvmpt | |- ( 0 e. NN0 -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` 0 ) = ( 0 x. ( X ^ 0 ) ) ) |
| 157 | 48 156 | ax-mp | |- ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` 0 ) = ( 0 x. ( X ^ 0 ) ) |
| 158 | 145 157 | eqtri | |- ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` 0 ) = ( 0 x. ( X ^ 0 ) ) |
| 159 | expcl | |- ( ( X e. CC /\ 0 e. NN0 ) -> ( X ^ 0 ) e. CC ) |
|
| 160 | 27 48 159 | sylancl | |- ( ph -> ( X ^ 0 ) e. CC ) |
| 161 | 160 | mul02d | |- ( ph -> ( 0 x. ( X ^ 0 ) ) = 0 ) |
| 162 | 158 161 | eqtrid | |- ( ph -> ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` 0 ) = 0 ) |
| 163 | 162 | oveq2d | |- ( ph -> ( ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` 0 ) ) = ( ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + 0 ) ) |
| 164 | 16 17 36 39 44 | isumcl | |- ( ph -> sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) e. CC ) |
| 165 | 27 164 | mulcld | |- ( ph -> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) e. CC ) |
| 166 | 165 | addridd | |- ( ph -> ( ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + 0 ) = ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 167 | 163 166 | eqtrd | |- ( ph -> ( ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` 0 ) ) = ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 168 | 143 167 | breqtrd | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ~~> ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 169 | 16 17 129 | serf | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) : NN0 --> CC ) |
| 170 | 169 | ffvelcdmda | |- ( ( ph /\ i e. NN0 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` i ) e. CC ) |
| 171 | 16 17 68 | serf | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) : NN0 --> CC ) |
| 172 | 171 | ffvelcdmda | |- ( ( ph /\ i e. NN0 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` i ) e. CC ) |
| 173 | simpr | |- ( ( ph /\ i e. NN0 ) -> i e. NN0 ) |
|
| 174 | 173 16 | eleqtrdi | |- ( ( ph /\ i e. NN0 ) -> i e. ( ZZ>= ` 0 ) ) |
| 175 | simpl | |- ( ( ph /\ i e. NN0 ) -> ph ) |
|
| 176 | elfznn0 | |- ( n e. ( 0 ... i ) -> n e. NN0 ) |
|
| 177 | 36 39 | eqeltrd | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) e. CC ) |
| 178 | 175 176 177 | syl2an | |- ( ( ( ph /\ i e. NN0 ) /\ n e. ( 0 ... i ) ) -> ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) e. CC ) |
| 179 | 113 | adantl | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) = ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) ) |
| 180 | fzfid | |- ( ( ph /\ n e. NN0 ) -> ( 0 ... ( n - 1 ) ) e. Fin ) |
|
| 181 | 1 | adantr | |- ( ( ph /\ n e. NN0 ) -> A : NN0 --> CC ) |
| 182 | 181 95 62 | syl2an | |- ( ( ( ph /\ n e. NN0 ) /\ m e. ( 0 ... ( n - 1 ) ) ) -> ( A ` m ) e. CC ) |
| 183 | 180 182 | fsumcl | |- ( ( ph /\ n e. NN0 ) -> sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) e. CC ) |
| 184 | 183 29 | mulcld | |- ( ( ph /\ n e. NN0 ) -> ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) e. CC ) |
| 185 | 179 184 | eqeltrd | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) e. CC ) |
| 186 | 175 176 185 | syl2an | |- ( ( ( ph /\ i e. NN0 ) /\ n e. ( 0 ... i ) ) -> ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) e. CC ) |
| 187 | eqidd | |- ( ( ( ph /\ n e. NN0 ) /\ m e. ( 0 ... n ) ) -> ( A ` m ) = ( A ` m ) ) |
|
| 188 | simpr | |- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
|
| 189 | 188 16 | eleqtrdi | |- ( ( ph /\ n e. NN0 ) -> n e. ( ZZ>= ` 0 ) ) |
| 190 | elfznn0 | |- ( m e. ( 0 ... n ) -> m e. NN0 ) |
|
| 191 | 181 190 62 | syl2an | |- ( ( ( ph /\ n e. NN0 ) /\ m e. ( 0 ... n ) ) -> ( A ` m ) e. CC ) |
| 192 | 187 189 191 | fsumser | |- ( ( ph /\ n e. NN0 ) -> sum_ m e. ( 0 ... n ) ( A ` m ) = ( seq 0 ( + , A ) ` n ) ) |
| 193 | fveq2 | |- ( m = n -> ( A ` m ) = ( A ` n ) ) |
|
| 194 | 189 191 193 | fsumm1 | |- ( ( ph /\ n e. NN0 ) -> sum_ m e. ( 0 ... n ) ( A ` m ) = ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) + ( A ` n ) ) ) |
| 195 | 192 194 | eqtr3d | |- ( ( ph /\ n e. NN0 ) -> ( seq 0 ( + , A ) ` n ) = ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) + ( A ` n ) ) ) |
| 196 | 195 | oveq1d | |- ( ( ph /\ n e. NN0 ) -> ( ( seq 0 ( + , A ) ` n ) - sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) ) = ( ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) + ( A ` n ) ) - sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) ) ) |
| 197 | 183 25 | pncan2d | |- ( ( ph /\ n e. NN0 ) -> ( ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) + ( A ` n ) ) - sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) ) = ( A ` n ) ) |
| 198 | 196 197 | eqtr2d | |- ( ( ph /\ n e. NN0 ) -> ( A ` n ) = ( ( seq 0 ( + , A ) ` n ) - sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) ) ) |
| 199 | 198 | oveq1d | |- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. ( X ^ n ) ) = ( ( ( seq 0 ( + , A ) ` n ) - sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) ) x. ( X ^ n ) ) ) |
| 200 | 38 183 29 | subdird | |- ( ( ph /\ n e. NN0 ) -> ( ( ( seq 0 ( + , A ) ` n ) - sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) ) x. ( X ^ n ) ) = ( ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) - ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) ) ) |
| 201 | 199 200 | eqtrd | |- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. ( X ^ n ) ) = ( ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) - ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) ) ) |
| 202 | 36 179 | oveq12d | |- ( ( ph /\ n e. NN0 ) -> ( ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) - ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) ) = ( ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) - ( sum_ m e. ( 0 ... ( n - 1 ) ) ( A ` m ) x. ( X ^ n ) ) ) ) |
| 203 | 201 24 202 | 3eqtr4d | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) - ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) ) ) |
| 204 | 175 176 203 | syl2an | |- ( ( ( ph /\ i e. NN0 ) /\ n e. ( 0 ... i ) ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ` n ) = ( ( ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ` n ) - ( ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ` n ) ) ) |
| 205 | 174 178 186 204 | sersub | |- ( ( ph /\ i e. NN0 ) -> ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ) ` i ) = ( ( seq 0 ( + , ( k e. NN0 |-> ( ( seq 0 ( + , A ) ` k ) x. ( X ^ k ) ) ) ) ` i ) - ( seq 0 ( + , ( k e. NN0 |-> ( sum_ m e. ( 0 ... ( k - 1 ) ) ( A ` m ) x. ( X ^ k ) ) ) ) ` i ) ) ) |
| 206 | 16 17 45 47 168 170 172 205 | climsub | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ) ~~> ( sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) - ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 207 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 208 | 207 27 164 | subdird | |- ( ph -> ( ( 1 - X ) x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) = ( ( 1 x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) - ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 209 | 164 | mullidd | |- ( ph -> ( 1 x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) = sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) |
| 210 | 209 | oveq1d | |- ( ph -> ( ( 1 x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) - ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) = ( sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) - ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 211 | 208 210 | eqtrd | |- ( ph -> ( ( 1 - X ) x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) = ( sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) - ( X x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) ) |
| 212 | 206 211 | breqtrrd | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( X ^ k ) ) ) ) ~~> ( ( 1 - X ) x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 213 | 16 17 24 30 212 | isumclim | |- ( ph -> sum_ n e. NN0 ( ( A ` n ) x. ( X ^ n ) ) = ( ( 1 - X ) x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |
| 214 | 15 213 | eqtrd | |- ( ph -> ( F ` X ) = ( ( 1 - X ) x. sum_ n e. NN0 ( ( seq 0 ( + , A ) ` n ) x. ( X ^ n ) ) ) ) |