This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . The peculiar region S , known as aStolz angle , is a teardrop-shaped subset of the closed unit ball containing 1 . Indeed, except for 1 itself, the rest of the Stolz angle is enclosed in the open unit ball. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| Assertion | abelthlem2 | |- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | 1cnd | |- ( ( M e. RR /\ 0 <_ M ) -> 1 e. CC ) |
|
| 7 | 0le0 | |- 0 <_ 0 |
|
| 8 | simpl | |- ( ( M e. RR /\ 0 <_ M ) -> M e. RR ) |
|
| 9 | 8 | recnd | |- ( ( M e. RR /\ 0 <_ M ) -> M e. CC ) |
| 10 | 9 | mul01d | |- ( ( M e. RR /\ 0 <_ M ) -> ( M x. 0 ) = 0 ) |
| 11 | 7 10 | breqtrrid | |- ( ( M e. RR /\ 0 <_ M ) -> 0 <_ ( M x. 0 ) ) |
| 12 | oveq2 | |- ( z = 1 -> ( 1 - z ) = ( 1 - 1 ) ) |
|
| 13 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 14 | 12 13 | eqtrdi | |- ( z = 1 -> ( 1 - z ) = 0 ) |
| 15 | 14 | abs00bd | |- ( z = 1 -> ( abs ` ( 1 - z ) ) = 0 ) |
| 16 | fveq2 | |- ( z = 1 -> ( abs ` z ) = ( abs ` 1 ) ) |
|
| 17 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 18 | 16 17 | eqtrdi | |- ( z = 1 -> ( abs ` z ) = 1 ) |
| 19 | 18 | oveq2d | |- ( z = 1 -> ( 1 - ( abs ` z ) ) = ( 1 - 1 ) ) |
| 20 | 19 13 | eqtrdi | |- ( z = 1 -> ( 1 - ( abs ` z ) ) = 0 ) |
| 21 | 20 | oveq2d | |- ( z = 1 -> ( M x. ( 1 - ( abs ` z ) ) ) = ( M x. 0 ) ) |
| 22 | 15 21 | breq12d | |- ( z = 1 -> ( ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) <-> 0 <_ ( M x. 0 ) ) ) |
| 23 | 22 5 | elrab2 | |- ( 1 e. S <-> ( 1 e. CC /\ 0 <_ ( M x. 0 ) ) ) |
| 24 | 6 11 23 | sylanbrc | |- ( ( M e. RR /\ 0 <_ M ) -> 1 e. S ) |
| 25 | velsn | |- ( z e. { 1 } <-> z = 1 ) |
|
| 26 | 25 | necon3bbii | |- ( -. z e. { 1 } <-> z =/= 1 ) |
| 27 | simprll | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> z e. CC ) |
|
| 28 | 0cn | |- 0 e. CC |
|
| 29 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 30 | 29 | cnmetdval | |- ( ( z e. CC /\ 0 e. CC ) -> ( z ( abs o. - ) 0 ) = ( abs ` ( z - 0 ) ) ) |
| 31 | 27 28 30 | sylancl | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( z ( abs o. - ) 0 ) = ( abs ` ( z - 0 ) ) ) |
| 32 | 27 | subid1d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( z - 0 ) = z ) |
| 33 | 32 | fveq2d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` ( z - 0 ) ) = ( abs ` z ) ) |
| 34 | 31 33 | eqtrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( z ( abs o. - ) 0 ) = ( abs ` z ) ) |
| 35 | 27 | abscld | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` z ) e. RR ) |
| 36 | 1red | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> 1 e. RR ) |
|
| 37 | 1re | |- 1 e. RR |
|
| 38 | resubcl | |- ( ( ( abs ` z ) e. RR /\ 1 e. RR ) -> ( ( abs ` z ) - 1 ) e. RR ) |
|
| 39 | 35 37 38 | sylancl | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( abs ` z ) - 1 ) e. RR ) |
| 40 | ax-1cn | |- 1 e. CC |
|
| 41 | subcl | |- ( ( 1 e. CC /\ z e. CC ) -> ( 1 - z ) e. CC ) |
|
| 42 | 40 27 41 | sylancr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( 1 - z ) e. CC ) |
| 43 | 42 | abscld | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` ( 1 - z ) ) e. RR ) |
| 44 | simpll | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> M e. RR ) |
|
| 45 | resubcl | |- ( ( 1 e. RR /\ ( abs ` z ) e. RR ) -> ( 1 - ( abs ` z ) ) e. RR ) |
|
| 46 | 37 35 45 | sylancr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( 1 - ( abs ` z ) ) e. RR ) |
| 47 | 44 46 | remulcld | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M x. ( 1 - ( abs ` z ) ) ) e. RR ) |
| 48 | 17 | oveq2i | |- ( ( abs ` z ) - ( abs ` 1 ) ) = ( ( abs ` z ) - 1 ) |
| 49 | abs2dif | |- ( ( z e. CC /\ 1 e. CC ) -> ( ( abs ` z ) - ( abs ` 1 ) ) <_ ( abs ` ( z - 1 ) ) ) |
|
| 50 | 27 40 49 | sylancl | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( abs ` z ) - ( abs ` 1 ) ) <_ ( abs ` ( z - 1 ) ) ) |
| 51 | 48 50 | eqbrtrrid | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( abs ` z ) - 1 ) <_ ( abs ` ( z - 1 ) ) ) |
| 52 | abssub | |- ( ( z e. CC /\ 1 e. CC ) -> ( abs ` ( z - 1 ) ) = ( abs ` ( 1 - z ) ) ) |
|
| 53 | 27 40 52 | sylancl | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` ( z - 1 ) ) = ( abs ` ( 1 - z ) ) ) |
| 54 | 51 53 | breqtrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( abs ` z ) - 1 ) <_ ( abs ` ( 1 - z ) ) ) |
| 55 | simprlr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) |
|
| 56 | 39 43 47 54 55 | letrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( abs ` z ) - 1 ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) |
| 57 | 35 36 47 | lesubaddd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( ( abs ` z ) - 1 ) <_ ( M x. ( 1 - ( abs ` z ) ) ) <-> ( abs ` z ) <_ ( ( M x. ( 1 - ( abs ` z ) ) ) + 1 ) ) ) |
| 58 | 56 57 | mpbid | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` z ) <_ ( ( M x. ( 1 - ( abs ` z ) ) ) + 1 ) ) |
| 59 | 9 | adantr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> M e. CC ) |
| 60 | 1cnd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> 1 e. CC ) |
|
| 61 | 44 35 | remulcld | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M x. ( abs ` z ) ) e. RR ) |
| 62 | 61 | recnd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M x. ( abs ` z ) ) e. CC ) |
| 63 | 59 60 62 | addsubd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( M + 1 ) - ( M x. ( abs ` z ) ) ) = ( ( M - ( M x. ( abs ` z ) ) ) + 1 ) ) |
| 64 | 35 | recnd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` z ) e. CC ) |
| 65 | 59 60 64 | subdid | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M x. ( 1 - ( abs ` z ) ) ) = ( ( M x. 1 ) - ( M x. ( abs ` z ) ) ) ) |
| 66 | 59 | mulridd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M x. 1 ) = M ) |
| 67 | 66 | oveq1d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( M x. 1 ) - ( M x. ( abs ` z ) ) ) = ( M - ( M x. ( abs ` z ) ) ) ) |
| 68 | 65 67 | eqtrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M x. ( 1 - ( abs ` z ) ) ) = ( M - ( M x. ( abs ` z ) ) ) ) |
| 69 | 68 | oveq1d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( M x. ( 1 - ( abs ` z ) ) ) + 1 ) = ( ( M - ( M x. ( abs ` z ) ) ) + 1 ) ) |
| 70 | 63 69 | eqtr4d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( M + 1 ) - ( M x. ( abs ` z ) ) ) = ( ( M x. ( 1 - ( abs ` z ) ) ) + 1 ) ) |
| 71 | 58 70 | breqtrrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` z ) <_ ( ( M + 1 ) - ( M x. ( abs ` z ) ) ) ) |
| 72 | peano2re | |- ( M e. RR -> ( M + 1 ) e. RR ) |
|
| 73 | 44 72 | syl | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M + 1 ) e. RR ) |
| 74 | 61 35 73 | leaddsub2d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( ( M x. ( abs ` z ) ) + ( abs ` z ) ) <_ ( M + 1 ) <-> ( abs ` z ) <_ ( ( M + 1 ) - ( M x. ( abs ` z ) ) ) ) ) |
| 75 | 71 74 | mpbird | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( M x. ( abs ` z ) ) + ( abs ` z ) ) <_ ( M + 1 ) ) |
| 76 | 59 64 | adddirp1d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( M + 1 ) x. ( abs ` z ) ) = ( ( M x. ( abs ` z ) ) + ( abs ` z ) ) ) |
| 77 | 73 | recnd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M + 1 ) e. CC ) |
| 78 | 77 | mulridd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( M + 1 ) x. 1 ) = ( M + 1 ) ) |
| 79 | 75 76 78 | 3brtr4d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( M + 1 ) x. ( abs ` z ) ) <_ ( ( M + 1 ) x. 1 ) ) |
| 80 | 0red | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> 0 e. RR ) |
|
| 81 | simplr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> 0 <_ M ) |
|
| 82 | 44 | ltp1d | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> M < ( M + 1 ) ) |
| 83 | 80 44 73 81 82 | lelttrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> 0 < ( M + 1 ) ) |
| 84 | lemul2 | |- ( ( ( abs ` z ) e. RR /\ 1 e. RR /\ ( ( M + 1 ) e. RR /\ 0 < ( M + 1 ) ) ) -> ( ( abs ` z ) <_ 1 <-> ( ( M + 1 ) x. ( abs ` z ) ) <_ ( ( M + 1 ) x. 1 ) ) ) |
|
| 85 | 35 36 73 83 84 | syl112anc | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( abs ` z ) <_ 1 <-> ( ( M + 1 ) x. ( abs ` z ) ) <_ ( ( M + 1 ) x. 1 ) ) ) |
| 86 | 79 85 | mpbird | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` z ) <_ 1 ) |
| 87 | 43 47 55 | lensymd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> -. ( M x. ( 1 - ( abs ` z ) ) ) < ( abs ` ( 1 - z ) ) ) |
| 88 | 10 | adantr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M x. 0 ) = 0 ) |
| 89 | simprr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> z =/= 1 ) |
|
| 90 | 89 | necomd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> 1 =/= z ) |
| 91 | subeq0 | |- ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) = 0 <-> 1 = z ) ) |
|
| 92 | 91 | necon3bid | |- ( ( 1 e. CC /\ z e. CC ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) ) |
| 93 | 40 27 92 | sylancr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( 1 - z ) =/= 0 <-> 1 =/= z ) ) |
| 94 | 90 93 | mpbird | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( 1 - z ) =/= 0 ) |
| 95 | absgt0 | |- ( ( 1 - z ) e. CC -> ( ( 1 - z ) =/= 0 <-> 0 < ( abs ` ( 1 - z ) ) ) ) |
|
| 96 | 42 95 | syl | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( ( 1 - z ) =/= 0 <-> 0 < ( abs ` ( 1 - z ) ) ) ) |
| 97 | 94 96 | mpbid | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> 0 < ( abs ` ( 1 - z ) ) ) |
| 98 | 88 97 | eqbrtrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( M x. 0 ) < ( abs ` ( 1 - z ) ) ) |
| 99 | oveq2 | |- ( 1 = ( abs ` z ) -> ( 1 - 1 ) = ( 1 - ( abs ` z ) ) ) |
|
| 100 | 13 99 | eqtr3id | |- ( 1 = ( abs ` z ) -> 0 = ( 1 - ( abs ` z ) ) ) |
| 101 | 100 | oveq2d | |- ( 1 = ( abs ` z ) -> ( M x. 0 ) = ( M x. ( 1 - ( abs ` z ) ) ) ) |
| 102 | 101 | breq1d | |- ( 1 = ( abs ` z ) -> ( ( M x. 0 ) < ( abs ` ( 1 - z ) ) <-> ( M x. ( 1 - ( abs ` z ) ) ) < ( abs ` ( 1 - z ) ) ) ) |
| 103 | 98 102 | syl5ibcom | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( 1 = ( abs ` z ) -> ( M x. ( 1 - ( abs ` z ) ) ) < ( abs ` ( 1 - z ) ) ) ) |
| 104 | 103 | necon3bd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( -. ( M x. ( 1 - ( abs ` z ) ) ) < ( abs ` ( 1 - z ) ) -> 1 =/= ( abs ` z ) ) ) |
| 105 | 87 104 | mpd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> 1 =/= ( abs ` z ) ) |
| 106 | 35 36 86 105 | leneltd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( abs ` z ) < 1 ) |
| 107 | 34 106 | eqbrtrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( z ( abs o. - ) 0 ) < 1 ) |
| 108 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 109 | 1xr | |- 1 e. RR* |
|
| 110 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 0 e. CC /\ z e. CC ) ) -> ( z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( z ( abs o. - ) 0 ) < 1 ) ) |
|
| 111 | 108 109 110 | mpanl12 | |- ( ( 0 e. CC /\ z e. CC ) -> ( z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( z ( abs o. - ) 0 ) < 1 ) ) |
| 112 | 28 27 111 | sylancr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> ( z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) <-> ( z ( abs o. - ) 0 ) < 1 ) ) |
| 113 | 107 112 | mpbird | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) /\ z =/= 1 ) ) -> z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 114 | 113 | expr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ ( z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) ) -> ( z =/= 1 -> z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 115 | 114 | 3impb | |- ( ( ( M e. RR /\ 0 <_ M ) /\ z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) -> ( z =/= 1 -> z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 116 | 26 115 | biimtrid | |- ( ( ( M e. RR /\ 0 <_ M ) /\ z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) -> ( -. z e. { 1 } -> z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 117 | 116 | orrd | |- ( ( ( M e. RR /\ 0 <_ M ) /\ z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) -> ( z e. { 1 } \/ z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 118 | elun | |- ( z e. ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) <-> ( z e. { 1 } \/ z e. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
|
| 119 | 117 118 | sylibr | |- ( ( ( M e. RR /\ 0 <_ M ) /\ z e. CC /\ ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) ) -> z e. ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 120 | 119 | rabssdv | |- ( ( M e. RR /\ 0 <_ M ) -> { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 121 | 5 120 | eqsstrid | |- ( ( M e. RR /\ 0 <_ M ) -> S C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 122 | ssundif | |- ( S C_ ( { 1 } u. ( 0 ( ball ` ( abs o. - ) ) 1 ) ) <-> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
|
| 123 | 121 122 | sylib | |- ( ( M e. RR /\ 0 <_ M ) -> ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) |
| 124 | 24 123 | jca | |- ( ( M e. RR /\ 0 <_ M ) -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 125 | 3 4 124 | syl2anc | |- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |