This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split off the first N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumsplit.1 | |- Z = ( ZZ>= ` M ) |
|
| isumsplit.2 | |- W = ( ZZ>= ` N ) |
||
| isumsplit.3 | |- ( ph -> N e. Z ) |
||
| isumsplit.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumsplit.5 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| isumsplit.6 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| Assertion | isumsplit | |- ( ph -> sum_ k e. Z A = ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. W A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumsplit.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumsplit.2 | |- W = ( ZZ>= ` N ) |
|
| 3 | isumsplit.3 | |- ( ph -> N e. Z ) |
|
| 4 | isumsplit.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 5 | isumsplit.5 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 6 | isumsplit.6 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 7 | 3 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 8 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 9 | 7 8 | syl | |- ( ph -> M e. ZZ ) |
| 10 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 11 | 7 10 | syl | |- ( ph -> N e. ZZ ) |
| 12 | uzss | |- ( N e. ( ZZ>= ` M ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
|
| 13 | 7 12 | syl | |- ( ph -> ( ZZ>= ` N ) C_ ( ZZ>= ` M ) ) |
| 14 | 13 2 1 | 3sstr4g | |- ( ph -> W C_ Z ) |
| 15 | 14 | sselda | |- ( ( ph /\ k e. W ) -> k e. Z ) |
| 16 | 15 4 | syldan | |- ( ( ph /\ k e. W ) -> ( F ` k ) = A ) |
| 17 | 15 5 | syldan | |- ( ( ph /\ k e. W ) -> A e. CC ) |
| 18 | 4 5 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 19 | 1 3 18 | iserex | |- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
| 20 | 6 19 | mpbid | |- ( ph -> seq N ( + , F ) e. dom ~~> ) |
| 21 | 2 11 16 17 20 | isumclim2 | |- ( ph -> seq N ( + , F ) ~~> sum_ k e. W A ) |
| 22 | fzfid | |- ( ph -> ( M ... ( N - 1 ) ) e. Fin ) |
|
| 23 | elfzuz | |- ( k e. ( M ... ( N - 1 ) ) -> k e. ( ZZ>= ` M ) ) |
|
| 24 | 23 1 | eleqtrrdi | |- ( k e. ( M ... ( N - 1 ) ) -> k e. Z ) |
| 25 | 24 5 | sylan2 | |- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
| 26 | 22 25 | fsumcl | |- ( ph -> sum_ k e. ( M ... ( N - 1 ) ) A e. CC ) |
| 27 | 15 18 | syldan | |- ( ( ph /\ k e. W ) -> ( F ` k ) e. CC ) |
| 28 | 2 11 27 | serf | |- ( ph -> seq N ( + , F ) : W --> CC ) |
| 29 | 28 | ffvelcdmda | |- ( ( ph /\ j e. W ) -> ( seq N ( + , F ) ` j ) e. CC ) |
| 30 | 9 | zred | |- ( ph -> M e. RR ) |
| 31 | 30 | ltm1d | |- ( ph -> ( M - 1 ) < M ) |
| 32 | peano2zm | |- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
|
| 33 | fzn | |- ( ( M e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
|
| 34 | 9 32 33 | syl2anc2 | |- ( ph -> ( ( M - 1 ) < M <-> ( M ... ( M - 1 ) ) = (/) ) ) |
| 35 | 31 34 | mpbid | |- ( ph -> ( M ... ( M - 1 ) ) = (/) ) |
| 36 | 35 | sumeq1d | |- ( ph -> sum_ k e. ( M ... ( M - 1 ) ) A = sum_ k e. (/) A ) |
| 37 | 36 | adantr | |- ( ( ph /\ j e. W ) -> sum_ k e. ( M ... ( M - 1 ) ) A = sum_ k e. (/) A ) |
| 38 | sum0 | |- sum_ k e. (/) A = 0 |
|
| 39 | 37 38 | eqtrdi | |- ( ( ph /\ j e. W ) -> sum_ k e. ( M ... ( M - 1 ) ) A = 0 ) |
| 40 | 39 | oveq1d | |- ( ( ph /\ j e. W ) -> ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) = ( 0 + ( seq M ( + , F ) ` j ) ) ) |
| 41 | 14 | sselda | |- ( ( ph /\ j e. W ) -> j e. Z ) |
| 42 | 1 9 18 | serf | |- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 43 | 42 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. CC ) |
| 44 | 41 43 | syldan | |- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) e. CC ) |
| 45 | 44 | addlidd | |- ( ( ph /\ j e. W ) -> ( 0 + ( seq M ( + , F ) ` j ) ) = ( seq M ( + , F ) ` j ) ) |
| 46 | 40 45 | eqtr2d | |- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) |
| 47 | oveq1 | |- ( N = M -> ( N - 1 ) = ( M - 1 ) ) |
|
| 48 | 47 | oveq2d | |- ( N = M -> ( M ... ( N - 1 ) ) = ( M ... ( M - 1 ) ) ) |
| 49 | 48 | sumeq1d | |- ( N = M -> sum_ k e. ( M ... ( N - 1 ) ) A = sum_ k e. ( M ... ( M - 1 ) ) A ) |
| 50 | seqeq1 | |- ( N = M -> seq N ( + , F ) = seq M ( + , F ) ) |
|
| 51 | 50 | fveq1d | |- ( N = M -> ( seq N ( + , F ) ` j ) = ( seq M ( + , F ) ` j ) ) |
| 52 | 49 51 | oveq12d | |- ( N = M -> ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) |
| 53 | 52 | eqeq2d | |- ( N = M -> ( ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) <-> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( M - 1 ) ) A + ( seq M ( + , F ) ` j ) ) ) ) |
| 54 | 46 53 | syl5ibrcom | |- ( ( ph /\ j e. W ) -> ( N = M -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) ) |
| 55 | addcl | |- ( ( k e. CC /\ m e. CC ) -> ( k + m ) e. CC ) |
|
| 56 | 55 | adantl | |- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( k e. CC /\ m e. CC ) ) -> ( k + m ) e. CC ) |
| 57 | addass | |- ( ( k e. CC /\ m e. CC /\ x e. CC ) -> ( ( k + m ) + x ) = ( k + ( m + x ) ) ) |
|
| 58 | 57 | adantl | |- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ ( k e. CC /\ m e. CC /\ x e. CC ) ) -> ( ( k + m ) + x ) = ( k + ( m + x ) ) ) |
| 59 | simplr | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. W ) |
|
| 60 | simpll | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ph ) |
|
| 61 | 11 | zcnd | |- ( ph -> N e. CC ) |
| 62 | ax-1cn | |- 1 e. CC |
|
| 63 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 64 | 61 62 63 | sylancl | |- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 65 | 64 | eqcomd | |- ( ph -> N = ( ( N - 1 ) + 1 ) ) |
| 66 | 60 65 | syl | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> N = ( ( N - 1 ) + 1 ) ) |
| 67 | 66 | fveq2d | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ZZ>= ` N ) = ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 68 | 2 67 | eqtrid | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> W = ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 69 | 59 68 | eleqtrd | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> j e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) |
| 70 | 9 | adantr | |- ( ( ph /\ j e. W ) -> M e. ZZ ) |
| 71 | eluzp1m1 | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 72 | 70 71 | sylan | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 73 | elfzuz | |- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
|
| 74 | 73 1 | eleqtrrdi | |- ( k e. ( M ... j ) -> k e. Z ) |
| 75 | 60 74 18 | syl2an | |- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 76 | 56 58 69 72 75 | seqsplit | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq M ( + , F ) ` ( N - 1 ) ) + ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) ) |
| 77 | 60 24 4 | syl2an | |- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) = A ) |
| 78 | 60 24 5 | syl2an | |- ( ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) /\ k e. ( M ... ( N - 1 ) ) ) -> A e. CC ) |
| 79 | 77 72 78 | fsumser | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> sum_ k e. ( M ... ( N - 1 ) ) A = ( seq M ( + , F ) ` ( N - 1 ) ) ) |
| 80 | 66 | seqeq1d | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> seq N ( + , F ) = seq ( ( N - 1 ) + 1 ) ( + , F ) ) |
| 81 | 80 | fveq1d | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq N ( + , F ) ` j ) = ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) |
| 82 | 79 81 | oveq12d | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) = ( ( seq M ( + , F ) ` ( N - 1 ) ) + ( seq ( ( N - 1 ) + 1 ) ( + , F ) ` j ) ) ) |
| 83 | 76 82 | eqtr4d | |- ( ( ( ph /\ j e. W ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) |
| 84 | 83 | ex | |- ( ( ph /\ j e. W ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) ) |
| 85 | uzp1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
|
| 86 | 7 85 | syl | |- ( ph -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 87 | 86 | adantr | |- ( ( ph /\ j e. W ) -> ( N = M \/ N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 88 | 54 84 87 | mpjaod | |- ( ( ph /\ j e. W ) -> ( seq M ( + , F ) ` j ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + ( seq N ( + , F ) ` j ) ) ) |
| 89 | 2 11 21 26 6 29 88 | climaddc2 | |- ( ph -> seq M ( + , F ) ~~> ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. W A ) ) |
| 90 | 1 9 4 5 89 | isumclim | |- ( ph -> sum_ k e. Z A = ( sum_ k e. ( M ... ( N - 1 ) ) A + sum_ k e. W A ) ) |