This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumle.1 | |- Z = ( ZZ>= ` M ) |
|
| isumle.2 | |- ( ph -> M e. ZZ ) |
||
| isumle.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumle.4 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
||
| isumle.5 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = B ) |
||
| isumle.6 | |- ( ( ph /\ k e. Z ) -> B e. RR ) |
||
| isumle.7 | |- ( ( ph /\ k e. Z ) -> A <_ B ) |
||
| isumle.8 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| isumle.9 | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |
||
| Assertion | isumle | |- ( ph -> sum_ k e. Z A <_ sum_ k e. Z B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumle.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumle.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumle.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 4 | isumle.4 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
|
| 5 | isumle.5 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = B ) |
|
| 6 | isumle.6 | |- ( ( ph /\ k e. Z ) -> B e. RR ) |
|
| 7 | isumle.7 | |- ( ( ph /\ k e. Z ) -> A <_ B ) |
|
| 8 | isumle.8 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 9 | isumle.9 | |- ( ph -> seq M ( + , G ) e. dom ~~> ) |
|
| 10 | climdm | |- ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
|
| 11 | 8 10 | sylib | |- ( ph -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
| 12 | climdm | |- ( seq M ( + , G ) e. dom ~~> <-> seq M ( + , G ) ~~> ( ~~> ` seq M ( + , G ) ) ) |
|
| 13 | 9 12 | sylib | |- ( ph -> seq M ( + , G ) ~~> ( ~~> ` seq M ( + , G ) ) ) |
| 14 | 3 4 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 15 | 5 6 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 16 | 7 3 5 | 3brtr4d | |- ( ( ph /\ k e. Z ) -> ( F ` k ) <_ ( G ` k ) ) |
| 17 | 1 2 11 13 14 15 16 | iserle | |- ( ph -> ( ~~> ` seq M ( + , F ) ) <_ ( ~~> ` seq M ( + , G ) ) ) |
| 18 | 4 | recnd | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 19 | 1 2 3 18 | isum | |- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) ) |
| 20 | 6 | recnd | |- ( ( ph /\ k e. Z ) -> B e. CC ) |
| 21 | 1 2 5 20 | isum | |- ( ph -> sum_ k e. Z B = ( ~~> ` seq M ( + , G ) ) ) |
| 22 | 17 19 21 | 3brtr4d | |- ( ph -> sum_ k e. Z A <_ sum_ k e. Z B ) |