This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| Assertion | abelthlem4 | |- ( ph -> F : S --> CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 7 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 8 | 0zd | |- ( ( ph /\ x e. S ) -> 0 e. ZZ ) |
|
| 9 | fveq2 | |- ( m = n -> ( A ` m ) = ( A ` n ) ) |
|
| 10 | oveq2 | |- ( m = n -> ( x ^ m ) = ( x ^ n ) ) |
|
| 11 | 9 10 | oveq12d | |- ( m = n -> ( ( A ` m ) x. ( x ^ m ) ) = ( ( A ` n ) x. ( x ^ n ) ) ) |
| 12 | eqid | |- ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) = ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) |
|
| 13 | ovex | |- ( ( A ` n ) x. ( x ^ n ) ) e. _V |
|
| 14 | 11 12 13 | fvmpt | |- ( n e. NN0 -> ( ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) ` n ) = ( ( A ` n ) x. ( x ^ n ) ) ) |
| 15 | 14 | adantl | |- ( ( ( ph /\ x e. S ) /\ n e. NN0 ) -> ( ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) ` n ) = ( ( A ` n ) x. ( x ^ n ) ) ) |
| 16 | 1 | adantr | |- ( ( ph /\ x e. S ) -> A : NN0 --> CC ) |
| 17 | 16 | ffvelcdmda | |- ( ( ( ph /\ x e. S ) /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
| 18 | 5 | ssrab3 | |- S C_ CC |
| 19 | 18 | a1i | |- ( ph -> S C_ CC ) |
| 20 | 19 | sselda | |- ( ( ph /\ x e. S ) -> x e. CC ) |
| 21 | expcl | |- ( ( x e. CC /\ n e. NN0 ) -> ( x ^ n ) e. CC ) |
|
| 22 | 20 21 | sylan | |- ( ( ( ph /\ x e. S ) /\ n e. NN0 ) -> ( x ^ n ) e. CC ) |
| 23 | 17 22 | mulcld | |- ( ( ( ph /\ x e. S ) /\ n e. NN0 ) -> ( ( A ` n ) x. ( x ^ n ) ) e. CC ) |
| 24 | 1 2 3 4 5 | abelthlem3 | |- ( ( ph /\ x e. S ) -> seq 0 ( + , ( m e. NN0 |-> ( ( A ` m ) x. ( x ^ m ) ) ) ) e. dom ~~> ) |
| 25 | 7 8 15 23 24 | isumcl | |- ( ( ph /\ x e. S ) -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) e. CC ) |
| 26 | 25 6 | fmptd | |- ( ph -> F : S --> CC ) |