This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all of the terms of finite sums compare, so do the sums. (Contributed by NM, 11-Dec-2005) (Proof shortened by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumle.1 | |- ( ph -> A e. Fin ) |
|
| fsumle.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| fsumle.3 | |- ( ( ph /\ k e. A ) -> C e. RR ) |
||
| fsumle.4 | |- ( ( ph /\ k e. A ) -> B <_ C ) |
||
| Assertion | fsumle | |- ( ph -> sum_ k e. A B <_ sum_ k e. A C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumle.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumle.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 3 | fsumle.3 | |- ( ( ph /\ k e. A ) -> C e. RR ) |
|
| 4 | fsumle.4 | |- ( ( ph /\ k e. A ) -> B <_ C ) |
|
| 5 | 3 2 | resubcld | |- ( ( ph /\ k e. A ) -> ( C - B ) e. RR ) |
| 6 | 3 2 | subge0d | |- ( ( ph /\ k e. A ) -> ( 0 <_ ( C - B ) <-> B <_ C ) ) |
| 7 | 4 6 | mpbird | |- ( ( ph /\ k e. A ) -> 0 <_ ( C - B ) ) |
| 8 | 1 5 7 | fsumge0 | |- ( ph -> 0 <_ sum_ k e. A ( C - B ) ) |
| 9 | 3 | recnd | |- ( ( ph /\ k e. A ) -> C e. CC ) |
| 10 | 2 | recnd | |- ( ( ph /\ k e. A ) -> B e. CC ) |
| 11 | 1 9 10 | fsumsub | |- ( ph -> sum_ k e. A ( C - B ) = ( sum_ k e. A C - sum_ k e. A B ) ) |
| 12 | 8 11 | breqtrd | |- ( ph -> 0 <_ ( sum_ k e. A C - sum_ k e. A B ) ) |
| 13 | 1 3 | fsumrecl | |- ( ph -> sum_ k e. A C e. RR ) |
| 14 | 1 2 | fsumrecl | |- ( ph -> sum_ k e. A B e. RR ) |
| 15 | 13 14 | subge0d | |- ( ph -> ( 0 <_ ( sum_ k e. A C - sum_ k e. A B ) <-> sum_ k e. A B <_ sum_ k e. A C ) ) |
| 16 | 12 15 | mpbid | |- ( ph -> sum_ k e. A B <_ sum_ k e. A C ) |