This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007) (Revised by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| isermulc2.2 | |- ( ph -> M e. ZZ ) |
||
| isermulc2.4 | |- ( ph -> C e. CC ) |
||
| isermulc2.5 | |- ( ph -> seq M ( + , F ) ~~> A ) |
||
| isermulc2.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| isermulc2.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C x. ( F ` k ) ) ) |
||
| Assertion | isermulc2 | |- ( ph -> seq M ( + , G ) ~~> ( C x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isermulc2.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isermulc2.4 | |- ( ph -> C e. CC ) |
|
| 4 | isermulc2.5 | |- ( ph -> seq M ( + , F ) ~~> A ) |
|
| 5 | isermulc2.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 6 | isermulc2.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C x. ( F ` k ) ) ) |
|
| 7 | seqex | |- seq M ( + , G ) e. _V |
|
| 8 | 7 | a1i | |- ( ph -> seq M ( + , G ) e. _V ) |
| 9 | 1 2 5 | serf | |- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 10 | 9 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. CC ) |
| 11 | addcl | |- ( ( k e. CC /\ x e. CC ) -> ( k + x ) e. CC ) |
|
| 12 | 11 | adantl | |- ( ( ( ph /\ j e. Z ) /\ ( k e. CC /\ x e. CC ) ) -> ( k + x ) e. CC ) |
| 13 | 3 | adantr | |- ( ( ph /\ j e. Z ) -> C e. CC ) |
| 14 | adddi | |- ( ( C e. CC /\ k e. CC /\ x e. CC ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) ) |
|
| 15 | 14 | 3expb | |- ( ( C e. CC /\ ( k e. CC /\ x e. CC ) ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) ) |
| 16 | 13 15 | sylan | |- ( ( ( ph /\ j e. Z ) /\ ( k e. CC /\ x e. CC ) ) -> ( C x. ( k + x ) ) = ( ( C x. k ) + ( C x. x ) ) ) |
| 17 | simpr | |- ( ( ph /\ j e. Z ) -> j e. Z ) |
|
| 18 | 17 1 | eleqtrdi | |- ( ( ph /\ j e. Z ) -> j e. ( ZZ>= ` M ) ) |
| 19 | elfzuz | |- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
|
| 20 | 19 1 | eleqtrrdi | |- ( k e. ( M ... j ) -> k e. Z ) |
| 21 | 20 5 | sylan2 | |- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 22 | 21 | adantlr | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 23 | 20 6 | sylan2 | |- ( ( ph /\ k e. ( M ... j ) ) -> ( G ` k ) = ( C x. ( F ` k ) ) ) |
| 24 | 23 | adantlr | |- ( ( ( ph /\ j e. Z ) /\ k e. ( M ... j ) ) -> ( G ` k ) = ( C x. ( F ` k ) ) ) |
| 25 | 12 16 18 22 24 | seqdistr | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , G ) ` j ) = ( C x. ( seq M ( + , F ) ` j ) ) ) |
| 26 | 1 2 4 3 8 10 25 | climmulc2 | |- ( ph -> seq M ( + , G ) ~~> ( C x. A ) ) |