This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iserabs.1 | |- Z = ( ZZ>= ` M ) |
|
| iserabs.2 | |- ( ph -> seq M ( + , F ) ~~> A ) |
||
| iserabs.3 | |- ( ph -> seq M ( + , G ) ~~> B ) |
||
| iserabs.5 | |- ( ph -> M e. ZZ ) |
||
| iserabs.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| iserabs.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
||
| Assertion | iserabs | |- ( ph -> ( abs ` A ) <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iserabs.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iserabs.2 | |- ( ph -> seq M ( + , F ) ~~> A ) |
|
| 3 | iserabs.3 | |- ( ph -> seq M ( + , G ) ~~> B ) |
|
| 4 | iserabs.5 | |- ( ph -> M e. ZZ ) |
|
| 5 | iserabs.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 6 | iserabs.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
|
| 7 | 1 | fvexi | |- Z e. _V |
| 8 | 7 | mptex | |- ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) e. _V |
| 9 | 8 | a1i | |- ( ph -> ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) e. _V ) |
| 10 | 1 4 5 | serf | |- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , F ) ` n ) e. CC ) |
| 12 | 2fveq3 | |- ( m = n -> ( abs ` ( seq M ( + , F ) ` m ) ) = ( abs ` ( seq M ( + , F ) ` n ) ) ) |
|
| 13 | eqid | |- ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) = ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) |
|
| 14 | fvex | |- ( abs ` ( seq M ( + , F ) ` n ) ) e. _V |
|
| 15 | 12 13 14 | fvmpt | |- ( n e. Z -> ( ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ` n ) = ( abs ` ( seq M ( + , F ) ` n ) ) ) |
| 16 | 15 | adantl | |- ( ( ph /\ n e. Z ) -> ( ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ` n ) = ( abs ` ( seq M ( + , F ) ` n ) ) ) |
| 17 | 1 2 9 4 11 16 | climabs | |- ( ph -> ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ~~> ( abs ` A ) ) |
| 18 | 11 | abscld | |- ( ( ph /\ n e. Z ) -> ( abs ` ( seq M ( + , F ) ` n ) ) e. RR ) |
| 19 | 16 18 | eqeltrd | |- ( ( ph /\ n e. Z ) -> ( ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ` n ) e. RR ) |
| 20 | 5 | abscld | |- ( ( ph /\ k e. Z ) -> ( abs ` ( F ` k ) ) e. RR ) |
| 21 | 6 20 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. RR ) |
| 22 | 1 4 21 | serfre | |- ( ph -> seq M ( + , G ) : Z --> RR ) |
| 23 | 22 | ffvelcdmda | |- ( ( ph /\ n e. Z ) -> ( seq M ( + , G ) ` n ) e. RR ) |
| 24 | simpr | |- ( ( ph /\ n e. Z ) -> n e. Z ) |
|
| 25 | 24 1 | eleqtrdi | |- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` M ) ) |
| 26 | elfzuz | |- ( k e. ( M ... n ) -> k e. ( ZZ>= ` M ) ) |
|
| 27 | 26 1 | eleqtrrdi | |- ( k e. ( M ... n ) -> k e. Z ) |
| 28 | 27 5 | sylan2 | |- ( ( ph /\ k e. ( M ... n ) ) -> ( F ` k ) e. CC ) |
| 29 | 28 | adantlr | |- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( F ` k ) e. CC ) |
| 30 | 27 6 | sylan2 | |- ( ( ph /\ k e. ( M ... n ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
| 31 | 30 | adantlr | |- ( ( ( ph /\ n e. Z ) /\ k e. ( M ... n ) ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) |
| 32 | 25 29 31 | seqabs | |- ( ( ph /\ n e. Z ) -> ( abs ` ( seq M ( + , F ) ` n ) ) <_ ( seq M ( + , G ) ` n ) ) |
| 33 | 16 32 | eqbrtrd | |- ( ( ph /\ n e. Z ) -> ( ( m e. Z |-> ( abs ` ( seq M ( + , F ) ` m ) ) ) ` n ) <_ ( seq M ( + , G ) ` n ) ) |
| 34 | 1 4 17 3 19 23 33 | climle | |- ( ph -> ( abs ` A ) <_ B ) |