This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| iserex.2 | |- ( ph -> N e. Z ) |
||
| iserex.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| Assertion | iserex | |- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iserex.2 | |- ( ph -> N e. Z ) |
|
| 3 | iserex.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 4 | seqeq1 | |- ( N = M -> seq N ( + , F ) = seq M ( + , F ) ) |
|
| 5 | 4 | eleq1d | |- ( N = M -> ( seq N ( + , F ) e. dom ~~> <-> seq M ( + , F ) e. dom ~~> ) ) |
| 6 | 5 | bicomd | |- ( N = M -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
| 7 | 6 | a1i | |- ( ph -> ( N = M -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) ) |
| 8 | simpll | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ph ) |
|
| 9 | 2 1 | eleqtrdi | |- ( ph -> N e. ( ZZ>= ` M ) ) |
| 10 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 11 | 9 10 | syl | |- ( ph -> N e. ZZ ) |
| 12 | 11 | zcnd | |- ( ph -> N e. CC ) |
| 13 | ax-1cn | |- 1 e. CC |
|
| 14 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 15 | 12 13 14 | sylancl | |- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 16 | 15 | seqeq1d | |- ( ph -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) ) |
| 17 | 8 16 | syl | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) ) |
| 18 | simplr | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 19 | 18 1 | eleqtrrdi | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. Z ) |
| 20 | 8 3 | sylan | |- ( ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 21 | simpr | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> ) |
|
| 22 | climdm | |- ( seq M ( + , F ) e. dom ~~> <-> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
|
| 23 | 21 22 | sylib | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq M ( + , F ) ~~> ( ~~> ` seq M ( + , F ) ) ) |
| 24 | 1 19 20 23 | clim2ser | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) ) |
| 25 | 17 24 | eqbrtrrd | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq N ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) ) |
| 26 | climrel | |- Rel ~~> |
|
| 27 | 26 | releldmi | |- ( seq N ( + , F ) ~~> ( ( ~~> ` seq M ( + , F ) ) - ( seq M ( + , F ) ` ( N - 1 ) ) ) -> seq N ( + , F ) e. dom ~~> ) |
| 28 | 25 27 | syl | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq M ( + , F ) e. dom ~~> ) -> seq N ( + , F ) e. dom ~~> ) |
| 29 | simpr | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
|
| 30 | 29 1 | eleqtrrdi | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( N - 1 ) e. Z ) |
| 31 | 30 | adantr | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> ( N - 1 ) e. Z ) |
| 32 | simpll | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> ph ) |
|
| 33 | 32 3 | sylan | |- ( ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 34 | 32 16 | syl | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) = seq N ( + , F ) ) |
| 35 | simpr | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq N ( + , F ) e. dom ~~> ) |
|
| 36 | climdm | |- ( seq N ( + , F ) e. dom ~~> <-> seq N ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) ) |
|
| 37 | 35 36 | sylib | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq N ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) ) |
| 38 | 34 37 | eqbrtrd | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq ( ( N - 1 ) + 1 ) ( + , F ) ~~> ( ~~> ` seq N ( + , F ) ) ) |
| 39 | 1 31 33 38 | clim2ser2 | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq M ( + , F ) ~~> ( ( ~~> ` seq N ( + , F ) ) + ( seq M ( + , F ) ` ( N - 1 ) ) ) ) |
| 40 | 26 | releldmi | |- ( seq M ( + , F ) ~~> ( ( ~~> ` seq N ( + , F ) ) + ( seq M ( + , F ) ` ( N - 1 ) ) ) -> seq M ( + , F ) e. dom ~~> ) |
| 41 | 39 40 | syl | |- ( ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) /\ seq N ( + , F ) e. dom ~~> ) -> seq M ( + , F ) e. dom ~~> ) |
| 42 | 28 41 | impbida | |- ( ( ph /\ ( N - 1 ) e. ( ZZ>= ` M ) ) -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |
| 43 | 42 | ex | |- ( ph -> ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) ) |
| 44 | uzm1 | |- ( N e. ( ZZ>= ` M ) -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
|
| 45 | 9 44 | syl | |- ( ph -> ( N = M \/ ( N - 1 ) e. ( ZZ>= ` M ) ) ) |
| 46 | 7 43 45 | mpjaod | |- ( ph -> ( seq M ( + , F ) e. dom ~~> <-> seq N ( + , F ) e. dom ~~> ) ) |