This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum equals the value its series converges to. (Contributed by NM, 25-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumclim.1 | |- Z = ( ZZ>= ` M ) |
|
| isumclim.2 | |- ( ph -> M e. ZZ ) |
||
| isumclim.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumclim.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
||
| isumclim.6 | |- ( ph -> seq M ( + , F ) ~~> B ) |
||
| Assertion | isumclim | |- ( ph -> sum_ k e. Z A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumclim.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumclim.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumclim.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 4 | isumclim.4 | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
|
| 5 | isumclim.6 | |- ( ph -> seq M ( + , F ) ~~> B ) |
|
| 6 | 1 2 3 4 | isum | |- ( ph -> sum_ k e. Z A = ( ~~> ` seq M ( + , F ) ) ) |
| 7 | fclim | |- ~~> : dom ~~> --> CC |
|
| 8 | ffun | |- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
|
| 9 | 7 8 | ax-mp | |- Fun ~~> |
| 10 | funbrfv | |- ( Fun ~~> -> ( seq M ( + , F ) ~~> B -> ( ~~> ` seq M ( + , F ) ) = B ) ) |
|
| 11 | 9 5 10 | mpsyl | |- ( ph -> ( ~~> ` seq M ( + , F ) ) = B ) |
| 12 | 6 11 | eqtrd | |- ( ph -> sum_ k e. Z A = B ) |