This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledivmul | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ B <-> A <_ ( C x. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl | |- ( ( C e. RR /\ B e. RR ) -> ( C x. B ) e. RR ) |
|
| 2 | 1 | ancoms | |- ( ( B e. RR /\ C e. RR ) -> ( C x. B ) e. RR ) |
| 3 | 2 | adantrr | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( C x. B ) e. RR ) |
| 4 | 3 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( C x. B ) e. RR ) |
| 5 | lediv1 | |- ( ( A e. RR /\ ( C x. B ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( C x. B ) <-> ( A / C ) <_ ( ( C x. B ) / C ) ) ) |
|
| 6 | 4 5 | syld3an2 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( C x. B ) <-> ( A / C ) <_ ( ( C x. B ) / C ) ) ) |
| 7 | recn | |- ( B e. RR -> B e. CC ) |
|
| 8 | 7 | adantr | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> B e. CC ) |
| 9 | recn | |- ( C e. RR -> C e. CC ) |
|
| 10 | 9 | ad2antrl | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. CC ) |
| 11 | gt0ne0 | |- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
|
| 12 | 11 | adantl | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C =/= 0 ) |
| 13 | 8 10 12 | divcan3d | |- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. B ) / C ) = B ) |
| 14 | 13 | 3adant1 | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. B ) / C ) = B ) |
| 15 | 14 | breq2d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ ( ( C x. B ) / C ) <-> ( A / C ) <_ B ) ) |
| 16 | 6 15 | bitr2d | |- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ B <-> A <_ ( C x. B ) ) ) |