This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The partial sums in the geometric series A ^ M + A ^ ( M + 1 ) ... converge to ( ( A ^ M ) / ( 1 - A ) ) . (Contributed by NM, 6-Jun-2006) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | geolim.1 | |- ( ph -> A e. CC ) |
|
| geolim.2 | |- ( ph -> ( abs ` A ) < 1 ) |
||
| geolim2.3 | |- ( ph -> M e. NN0 ) |
||
| geolim2.4 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( A ^ k ) ) |
||
| Assertion | geolim2 | |- ( ph -> seq M ( + , F ) ~~> ( ( A ^ M ) / ( 1 - A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geolim.1 | |- ( ph -> A e. CC ) |
|
| 2 | geolim.2 | |- ( ph -> ( abs ` A ) < 1 ) |
|
| 3 | geolim2.3 | |- ( ph -> M e. NN0 ) |
|
| 4 | geolim2.4 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( A ^ k ) ) |
|
| 5 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 6 | 3 | nn0zd | |- ( ph -> M e. ZZ ) |
| 7 | 1 | adantr | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> A e. CC ) |
| 8 | eluznn0 | |- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
|
| 9 | 3 8 | sylan | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 10 | 7 9 | expcld | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A ^ k ) e. CC ) |
| 11 | oveq2 | |- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
|
| 12 | eqid | |- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
|
| 13 | ovex | |- ( A ^ k ) e. _V |
|
| 14 | 11 12 13 | fvmpt | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 15 | 9 14 | syl | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 16 | 15 4 | eqtr4d | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( F ` k ) ) |
| 17 | 6 16 | seqfeq | |- ( ph -> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) = seq M ( + , F ) ) |
| 18 | oveq2 | |- ( n = j -> ( A ^ n ) = ( A ^ j ) ) |
|
| 19 | ovex | |- ( A ^ j ) e. _V |
|
| 20 | 18 12 19 | fvmpt | |- ( j e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
| 21 | 20 | adantl | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
| 22 | 1 2 21 | geolim | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) |
| 23 | seqex | |- seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. _V |
|
| 24 | ovex | |- ( 1 / ( 1 - A ) ) e. _V |
|
| 25 | 23 24 | breldm | |- ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 26 | 22 25 | syl | |- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 27 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 28 | expcl | |- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
|
| 29 | 1 28 | sylan | |- ( ( ph /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
| 30 | 21 29 | eqeltrd | |- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) e. CC ) |
| 31 | 27 3 30 | iserex | |- ( ph -> ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> <-> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) ) |
| 32 | 26 31 | mpbid | |- ( ph -> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 33 | 17 32 | eqeltrrd | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 34 | 5 6 4 10 33 | isumclim2 | |- ( ph -> seq M ( + , F ) ~~> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) |
| 35 | 14 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 36 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 37 | 1 36 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 38 | 27 5 3 35 37 26 | isumsplit | |- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
| 39 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 40 | 27 39 35 37 22 | isumclim | |- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |
| 41 | 38 40 | eqtr3d | |- ( ph -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) = ( 1 / ( 1 - A ) ) ) |
| 42 | 1re | |- 1 e. RR |
|
| 43 | 42 | ltnri | |- -. 1 < 1 |
| 44 | fveq2 | |- ( A = 1 -> ( abs ` A ) = ( abs ` 1 ) ) |
|
| 45 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 46 | 44 45 | eqtrdi | |- ( A = 1 -> ( abs ` A ) = 1 ) |
| 47 | 46 | breq1d | |- ( A = 1 -> ( ( abs ` A ) < 1 <-> 1 < 1 ) ) |
| 48 | 43 47 | mtbiri | |- ( A = 1 -> -. ( abs ` A ) < 1 ) |
| 49 | 48 | necon2ai | |- ( ( abs ` A ) < 1 -> A =/= 1 ) |
| 50 | 2 49 | syl | |- ( ph -> A =/= 1 ) |
| 51 | 1 50 3 | geoser | |- ( ph -> sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) = ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) |
| 52 | 51 | oveq1d | |- ( ph -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) = ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
| 53 | 41 52 | eqtr3d | |- ( ph -> ( 1 / ( 1 - A ) ) = ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
| 54 | 53 | oveq1d | |- ( ph -> ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = ( ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) ) |
| 55 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 56 | ax-1cn | |- 1 e. CC |
|
| 57 | 1 3 | expcld | |- ( ph -> ( A ^ M ) e. CC ) |
| 58 | subcl | |- ( ( 1 e. CC /\ ( A ^ M ) e. CC ) -> ( 1 - ( A ^ M ) ) e. CC ) |
|
| 59 | 56 57 58 | sylancr | |- ( ph -> ( 1 - ( A ^ M ) ) e. CC ) |
| 60 | subcl | |- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
|
| 61 | 56 1 60 | sylancr | |- ( ph -> ( 1 - A ) e. CC ) |
| 62 | 50 | necomd | |- ( ph -> 1 =/= A ) |
| 63 | subeq0 | |- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
|
| 64 | 56 1 63 | sylancr | |- ( ph -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 65 | 64 | necon3bid | |- ( ph -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
| 66 | 62 65 | mpbird | |- ( ph -> ( 1 - A ) =/= 0 ) |
| 67 | 55 59 61 66 | divsubdird | |- ( ph -> ( ( 1 - ( 1 - ( A ^ M ) ) ) / ( 1 - A ) ) = ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) ) |
| 68 | nncan | |- ( ( 1 e. CC /\ ( A ^ M ) e. CC ) -> ( 1 - ( 1 - ( A ^ M ) ) ) = ( A ^ M ) ) |
|
| 69 | 56 57 68 | sylancr | |- ( ph -> ( 1 - ( 1 - ( A ^ M ) ) ) = ( A ^ M ) ) |
| 70 | 69 | oveq1d | |- ( ph -> ( ( 1 - ( 1 - ( A ^ M ) ) ) / ( 1 - A ) ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
| 71 | 67 70 | eqtr3d | |- ( ph -> ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
| 72 | 59 61 66 | divcld | |- ( ph -> ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) e. CC ) |
| 73 | 5 6 15 10 32 | isumcl | |- ( ph -> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) e. CC ) |
| 74 | 72 73 | pncan2d | |- ( ph -> ( ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) |
| 75 | 54 71 74 | 3eqtr3rd | |- ( ph -> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
| 76 | 34 75 | breqtrd | |- ( ph -> seq M ( + , F ) ~~> ( ( A ^ M ) / ( 1 - A ) ) ) |