This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If all of the terms of a finite sum are nonnegative, so is the sum. (Contributed by NM, 26-Dec-2005) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumge0.1 | |- ( ph -> A e. Fin ) |
|
| fsumge0.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
||
| fsumge0.3 | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
||
| Assertion | fsumge0 | |- ( ph -> 0 <_ sum_ k e. A B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumge0.1 | |- ( ph -> A e. Fin ) |
|
| 2 | fsumge0.2 | |- ( ( ph /\ k e. A ) -> B e. RR ) |
|
| 3 | fsumge0.3 | |- ( ( ph /\ k e. A ) -> 0 <_ B ) |
|
| 4 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 5 | ax-resscn | |- RR C_ CC |
|
| 6 | 4 5 | sstri | |- ( 0 [,) +oo ) C_ CC |
| 7 | 6 | a1i | |- ( ph -> ( 0 [,) +oo ) C_ CC ) |
| 8 | ge0addcl | |- ( ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
|
| 9 | 8 | adantl | |- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
| 10 | elrege0 | |- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
|
| 11 | 2 3 10 | sylanbrc | |- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
| 12 | 0e0icopnf | |- 0 e. ( 0 [,) +oo ) |
|
| 13 | 12 | a1i | |- ( ph -> 0 e. ( 0 [,) +oo ) ) |
| 14 | 7 9 1 11 13 | fsumcllem | |- ( ph -> sum_ k e. A B e. ( 0 [,) +oo ) ) |
| 15 | elrege0 | |- ( sum_ k e. A B e. ( 0 [,) +oo ) <-> ( sum_ k e. A B e. RR /\ 0 <_ sum_ k e. A B ) ) |
|
| 16 | 15 | simprbi | |- ( sum_ k e. A B e. ( 0 [,) +oo ) -> 0 <_ sum_ k e. A B ) |
| 17 | 14 16 | syl | |- ( ph -> 0 <_ sum_ k e. A B ) |