This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a converging infinite real series is a real number. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumrecl.1 | |- Z = ( ZZ>= ` M ) |
|
| isumrecl.2 | |- ( ph -> M e. ZZ ) |
||
| isumrecl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| isumrecl.4 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
||
| isumrecl.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
||
| Assertion | isumrecl | |- ( ph -> sum_ k e. Z A e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumrecl.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | isumrecl.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | isumrecl.3 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 4 | isumrecl.4 | |- ( ( ph /\ k e. Z ) -> A e. RR ) |
|
| 5 | isumrecl.5 | |- ( ph -> seq M ( + , F ) e. dom ~~> ) |
|
| 6 | 4 | recnd | |- ( ( ph /\ k e. Z ) -> A e. CC ) |
| 7 | 1 2 3 6 5 | isumclim2 | |- ( ph -> seq M ( + , F ) ~~> sum_ k e. Z A ) |
| 8 | 3 4 | eqeltrd | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
| 9 | 1 2 8 | serfre | |- ( ph -> seq M ( + , F ) : Z --> RR ) |
| 10 | 9 | ffvelcdmda | |- ( ( ph /\ j e. Z ) -> ( seq M ( + , F ) ` j ) e. RR ) |
| 11 | 1 2 7 10 | climrecl | |- ( ph -> sum_ k e. Z A e. RR ) |