This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition commutes. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | muld.1 | |- ( ph -> A e. CC ) |
|
| addcomd.2 | |- ( ph -> B e. CC ) |
||
| Assertion | addcomd | |- ( ph -> ( A + B ) = ( B + A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | |- ( ph -> A e. CC ) |
|
| 2 | addcomd.2 | |- ( ph -> B e. CC ) |
|
| 3 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 4 | 3 3 | addcld | |- ( ph -> ( 1 + 1 ) e. CC ) |
| 5 | 4 1 2 | adddid | |- ( ph -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( ( 1 + 1 ) x. A ) + ( ( 1 + 1 ) x. B ) ) ) |
| 6 | 1 2 | addcld | |- ( ph -> ( A + B ) e. CC ) |
| 7 | 1p1times | |- ( ( A + B ) e. CC -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
|
| 8 | 6 7 | syl | |- ( ph -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
| 9 | 1p1times | |- ( A e. CC -> ( ( 1 + 1 ) x. A ) = ( A + A ) ) |
|
| 10 | 1 9 | syl | |- ( ph -> ( ( 1 + 1 ) x. A ) = ( A + A ) ) |
| 11 | 1p1times | |- ( B e. CC -> ( ( 1 + 1 ) x. B ) = ( B + B ) ) |
|
| 12 | 2 11 | syl | |- ( ph -> ( ( 1 + 1 ) x. B ) = ( B + B ) ) |
| 13 | 10 12 | oveq12d | |- ( ph -> ( ( ( 1 + 1 ) x. A ) + ( ( 1 + 1 ) x. B ) ) = ( ( A + A ) + ( B + B ) ) ) |
| 14 | 5 8 13 | 3eqtr3rd | |- ( ph -> ( ( A + A ) + ( B + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
| 15 | 1 1 | addcld | |- ( ph -> ( A + A ) e. CC ) |
| 16 | 15 2 2 | addassd | |- ( ph -> ( ( ( A + A ) + B ) + B ) = ( ( A + A ) + ( B + B ) ) ) |
| 17 | 6 1 2 | addassd | |- ( ph -> ( ( ( A + B ) + A ) + B ) = ( ( A + B ) + ( A + B ) ) ) |
| 18 | 14 16 17 | 3eqtr4d | |- ( ph -> ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) ) |
| 19 | 15 2 | addcld | |- ( ph -> ( ( A + A ) + B ) e. CC ) |
| 20 | 6 1 | addcld | |- ( ph -> ( ( A + B ) + A ) e. CC ) |
| 21 | addcan2 | |- ( ( ( ( A + A ) + B ) e. CC /\ ( ( A + B ) + A ) e. CC /\ B e. CC ) -> ( ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) <-> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) ) |
|
| 22 | 19 20 2 21 | syl3anc | |- ( ph -> ( ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) <-> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) ) |
| 23 | 18 22 | mpbid | |- ( ph -> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) |
| 24 | 1 1 2 | addassd | |- ( ph -> ( ( A + A ) + B ) = ( A + ( A + B ) ) ) |
| 25 | 1 2 1 | addassd | |- ( ph -> ( ( A + B ) + A ) = ( A + ( B + A ) ) ) |
| 26 | 23 24 25 | 3eqtr3d | |- ( ph -> ( A + ( A + B ) ) = ( A + ( B + A ) ) ) |
| 27 | 2 1 | addcld | |- ( ph -> ( B + A ) e. CC ) |
| 28 | addcan | |- ( ( A e. CC /\ ( A + B ) e. CC /\ ( B + A ) e. CC ) -> ( ( A + ( A + B ) ) = ( A + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
|
| 29 | 1 6 27 28 | syl3anc | |- ( ph -> ( ( A + ( A + B ) ) = ( A + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
| 30 | 26 29 | mpbid | |- ( ph -> ( A + B ) = ( B + A ) ) |