This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The standard definition of a norm turns any pre-Hilbert space over a subfield of CCfld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | ||
| tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| tcphcph.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) | ||
| tcphcph.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) | ||
| Assertion | tcphcph | ⊢ ( 𝜑 → 𝐺 ∈ ℂPreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 5 | tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | |
| 6 | tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 7 | tcphcph.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) | |
| 8 | tcphcph.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) | |
| 9 | 1 | tcphphl | ⊢ ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) |
| 10 | 4 9 | sylib | ⊢ ( 𝜑 → 𝐺 ∈ PreHil ) |
| 11 | 1 2 6 | tcphval | ⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 12 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 13 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 14 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 15 | 4 14 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 16 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 18 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 , 𝑥 ) ∈ ℝ ) |
| 19 | 18 8 | resqrtcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ ℝ ) |
| 20 | 19 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) : 𝑉 ⟶ ℝ ) |
| 21 | oveq12 | ⊢ ( ( 𝑥 = 𝑦 ∧ 𝑥 = 𝑦 ) → ( 𝑥 , 𝑥 ) = ( 𝑦 , 𝑦 ) ) | |
| 22 | 21 | anidms | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 , 𝑥 ) = ( 𝑦 , 𝑦 ) ) |
| 23 | 22 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
| 24 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) | |
| 25 | fvex | ⊢ ( √ ‘ ( 𝑥 , 𝑥 ) ) ∈ V | |
| 26 | 23 24 25 | fvmpt3i | ⊢ ( 𝑦 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = ( √ ‘ ( 𝑦 , 𝑦 ) ) ) |
| 28 | 27 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 30 | phllvec | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) | |
| 31 | 4 30 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 32 | 3 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 33 | 31 32 | syl | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 34 | 29 5 33 | cphsubrglem | ⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 35 | 34 | simp2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ) |
| 36 | inss2 | ⊢ ( 𝐾 ∩ ℂ ) ⊆ ℂ | |
| 37 | 35 36 | eqsstrdi | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 39 | 3 6 2 29 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 40 | 39 | 3anidm23 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 41 | 4 40 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ( Base ‘ 𝐹 ) ) |
| 42 | 38 41 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 , 𝑦 ) ∈ ℂ ) |
| 43 | 42 | sqrtcld | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( √ ‘ ( 𝑦 , 𝑦 ) ) ∈ ℂ ) |
| 44 | sqeq0 | ⊢ ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ∈ ℂ → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ) ) |
| 46 | 42 | sqsqrtd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = ( 𝑦 , 𝑦 ) ) |
| 47 | 1 2 3 4 5 | phclm | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 48 | 3 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
| 49 | 47 48 | syl | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐹 ) ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → 0 = ( 0g ‘ 𝐹 ) ) |
| 51 | 46 50 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( √ ‘ ( 𝑦 , 𝑦 ) ) ↑ 2 ) = 0 ↔ ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ) ) |
| 52 | 45 51 | bitr3d | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( √ ‘ ( 𝑦 , 𝑦 ) ) = 0 ↔ ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ) ) |
| 53 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 54 | 3 6 2 53 13 | ipeq0 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
| 55 | 4 54 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑦 , 𝑦 ) = ( 0g ‘ 𝐹 ) ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
| 56 | 28 52 55 | 3bitrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) = 0 ↔ 𝑦 = ( 0g ‘ 𝑊 ) ) ) |
| 57 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) |
| 58 | 34 | simp1d | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 60 | 3anass | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) | |
| 61 | simpr2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) | |
| 62 | 61 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 63 | 62 | sqrtcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ℂ ) |
| 64 | 7 63 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) |
| 65 | 64 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) ) |
| 66 | 35 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ ( 𝐾 ∩ ℂ ) ) ) |
| 67 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 68 | elin | ⊢ ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℂ ) ) | |
| 69 | 68 | rbaib | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 70 | 67 69 | syl | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( 𝐾 ∩ ℂ ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 71 | 66 70 | sylan9bb | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 72 | 71 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) |
| 73 | 72 | ex | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( 𝑥 ∈ ( Base ‘ 𝐹 ) ↔ 𝑥 ∈ 𝐾 ) ) ) |
| 74 | 73 | pm5.32rd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) ) |
| 75 | 3anass | ⊢ ( ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ↔ ( 𝑥 ∈ 𝐾 ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) | |
| 76 | 74 75 | bitr4di | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
| 77 | 35 | eleq2d | ⊢ ( 𝜑 → ( ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ↔ ( √ ‘ 𝑥 ) ∈ ( 𝐾 ∩ ℂ ) ) ) |
| 78 | elin | ⊢ ( ( √ ‘ 𝑥 ) ∈ ( 𝐾 ∩ ℂ ) ↔ ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) | |
| 79 | 77 78 | bitrdi | ⊢ ( 𝜑 → ( ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ↔ ( ( √ ‘ 𝑥 ) ∈ 𝐾 ∧ ( √ ‘ 𝑥 ) ∈ ℂ ) ) ) |
| 80 | 65 76 79 | 3imtr4d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 81 | 60 80 | biimtrid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 82 | 81 | imp | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
| 83 | 82 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
| 84 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 85 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) | |
| 86 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) | |
| 87 | 1 2 3 57 59 6 83 84 29 12 85 86 | tcphcphlem1 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ≤ ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 88 | 2 12 | grpsubcl | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 89 | 88 | 3expb | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 90 | 17 89 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 91 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∧ 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑥 , 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) | |
| 92 | 91 | anidms | ⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) → ( 𝑥 , 𝑥 ) = ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) |
| 93 | 92 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 94 | 93 24 25 | fvmpt3i | ⊢ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 95 | 90 94 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 96 | oveq12 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑥 = 𝑧 ) → ( 𝑥 , 𝑥 ) = ( 𝑧 , 𝑧 ) ) | |
| 97 | 96 | anidms | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 , 𝑥 ) = ( 𝑧 , 𝑧 ) ) |
| 98 | 97 | fveq2d | ⊢ ( 𝑥 = 𝑧 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
| 99 | 98 24 25 | fvmpt3i | ⊢ ( 𝑧 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
| 100 | 26 99 | oveqan12d | ⊢ ( ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) = ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 101 | 100 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) = ( ( √ ‘ ( 𝑦 , 𝑦 ) ) + ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 102 | 87 95 101 | 3brtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ ( 𝑦 ( -g ‘ 𝑊 ) 𝑧 ) ) ≤ ( ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑦 ) + ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑧 ) ) ) |
| 103 | 11 2 12 13 17 20 56 102 | tngngpd | ⊢ ( 𝜑 → 𝐺 ∈ NrmGrp ) |
| 104 | phllmod | ⊢ ( 𝐺 ∈ PreHil → 𝐺 ∈ LMod ) | |
| 105 | 10 104 | syl | ⊢ ( 𝜑 → 𝐺 ∈ LMod ) |
| 106 | cnnrg | ⊢ ℂfld ∈ NrmRing | |
| 107 | 34 | simp3d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
| 108 | eqid | ⊢ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) | |
| 109 | 108 | subrgnrg | ⊢ ( ( ℂfld ∈ NrmRing ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) → ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∈ NrmRing ) |
| 110 | 106 107 109 | sylancr | ⊢ ( 𝜑 → ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∈ NrmRing ) |
| 111 | 58 110 | eqeltrd | ⊢ ( 𝜑 → 𝐹 ∈ NrmRing ) |
| 112 | 103 105 111 | 3jca | ⊢ ( 𝜑 → ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ) |
| 113 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) |
| 114 | 58 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 115 | 82 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
| 116 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 117 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 118 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝐹 ) ) | |
| 119 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → 𝑧 ∈ 𝑉 ) | |
| 120 | 1 2 3 113 114 6 115 116 29 117 118 119 | tcphcphlem2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) = ( ( abs ‘ 𝑦 ) · ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 121 | 2 3 117 29 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 122 | 121 | 3expb | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 123 | 15 122 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) |
| 124 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 125 | 1 124 2 6 | tcphnmval | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 126 | 17 123 125 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( √ ‘ ( ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) , ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) ) ) |
| 127 | 114 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( norm ‘ 𝐹 ) = ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 128 | 127 | fveq1d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) = ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) ) |
| 129 | subrgsubg | ⊢ ( ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) → ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ) | |
| 130 | 107 129 | syl | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ) |
| 131 | cnfldnm | ⊢ abs = ( norm ‘ ℂfld ) | |
| 132 | eqid | ⊢ ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) = ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) | |
| 133 | 108 131 132 | subgnm2 | ⊢ ( ( ( Base ‘ 𝐹 ) ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
| 134 | 130 118 133 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
| 135 | 128 134 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) = ( abs ‘ 𝑦 ) ) |
| 136 | 1 124 2 6 | tcphnmval | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑧 ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
| 137 | 17 119 136 | syl2an2r | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) = ( √ ‘ ( 𝑧 , 𝑧 ) ) ) |
| 138 | 135 137 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) = ( ( abs ‘ 𝑦 ) · ( √ ‘ ( 𝑧 , 𝑧 ) ) ) ) |
| 139 | 120 126 138 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐹 ) ∧ 𝑧 ∈ 𝑉 ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 140 | 139 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ 𝑉 ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) |
| 141 | 1 2 | tcphbas | ⊢ 𝑉 = ( Base ‘ 𝐺 ) |
| 142 | 1 117 | tcphvsca | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) |
| 143 | 1 3 | tcphsca | ⊢ 𝐹 = ( Scalar ‘ 𝐺 ) |
| 144 | eqid | ⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) | |
| 145 | 141 124 142 143 29 144 | isnlm | ⊢ ( 𝐺 ∈ NrmMod ↔ ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ∀ 𝑧 ∈ 𝑉 ( ( norm ‘ 𝐺 ) ‘ ( 𝑦 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑦 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑧 ) ) ) ) |
| 146 | 112 140 145 | sylanbrc | ⊢ ( 𝜑 → 𝐺 ∈ NrmMod ) |
| 147 | 10 146 58 | 3jca | ⊢ ( 𝜑 → ( 𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ) |
| 148 | elin | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) ) | |
| 149 | elrege0 | ⊢ ( 𝑥 ∈ ( 0 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) | |
| 150 | 149 | anbi2i | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑥 ∈ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
| 151 | 148 150 | bitri | ⊢ ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ↔ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) ) |
| 152 | 151 80 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 153 | 152 | ralrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) |
| 154 | sqrtf | ⊢ √ : ℂ ⟶ ℂ | |
| 155 | ffun | ⊢ ( √ : ℂ ⟶ ℂ → Fun √ ) | |
| 156 | 154 155 | ax-mp | ⊢ Fun √ |
| 157 | inss1 | ⊢ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ ( Base ‘ 𝐹 ) | |
| 158 | 157 37 | sstrid | ⊢ ( 𝜑 → ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ ℂ ) |
| 159 | 154 | fdmi | ⊢ dom √ = ℂ |
| 160 | 158 159 | sseqtrrdi | ⊢ ( 𝜑 → ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ dom √ ) |
| 161 | funimass4 | ⊢ ( ( Fun √ ∧ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ⊆ dom √ ) → ( ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) | |
| 162 | 156 160 161 | sylancr | ⊢ ( 𝜑 → ( ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ↔ ∀ 𝑥 ∈ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑥 ) ∈ ( Base ‘ 𝐹 ) ) ) |
| 163 | 153 162 | mpbird | ⊢ ( 𝜑 → ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ) |
| 164 | 43 | fmpttd | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) : 𝑉 ⟶ ℂ ) |
| 165 | 1 2 6 | tcphval | ⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) |
| 166 | cnex | ⊢ ℂ ∈ V | |
| 167 | 165 2 166 | tngnm | ⊢ ( ( 𝑊 ∈ Grp ∧ ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) : 𝑉 ⟶ ℂ ) → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) = ( norm ‘ 𝐺 ) ) |
| 168 | 17 164 167 | syl2anc | ⊢ ( 𝜑 → ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) = ( norm ‘ 𝐺 ) ) |
| 169 | 168 | eqcomd | ⊢ ( 𝜑 → ( norm ‘ 𝐺 ) = ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) |
| 170 | 1 6 | tcphip | ⊢ , = ( ·𝑖 ‘ 𝐺 ) |
| 171 | 141 170 124 143 29 | iscph | ⊢ ( 𝐺 ∈ ℂPreHil ↔ ( ( 𝐺 ∈ PreHil ∧ 𝐺 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) ∧ ( √ “ ( ( Base ‘ 𝐹 ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ 𝐹 ) ∧ ( norm ‘ 𝐺 ) = ( 𝑦 ∈ 𝑉 ↦ ( √ ‘ ( 𝑦 , 𝑦 ) ) ) ) ) |
| 172 | 147 163 169 171 | syl3anbrc | ⊢ ( 𝜑 → 𝐺 ∈ ℂPreHil ) |