This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a vector with itself is zero iff the vector is zero. Part of Definition 3.1-1 of Kreyszig p. 129. (Contributed by NM, 24-Jan-2008) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ip0l.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | ||
| ip0l.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | ipeq0 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 𝑍 ↔ 𝐴 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ip0l.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | |
| 5 | ip0l.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 7 | 3 1 2 5 6 4 | isphl | ⊢ ( 𝑊 ∈ PreHil ↔ ( 𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) ) |
| 8 | 7 | simp3bi | ⊢ ( 𝑊 ∈ PreHil → ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) ) |
| 9 | simp2 | ⊢ ( ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) → ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ) | |
| 10 | 9 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑉 ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑦 , 𝑥 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ ∀ 𝑦 ∈ 𝑉 ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑥 , 𝑦 ) ) = ( 𝑦 , 𝑥 ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ) |
| 11 | 8 10 | syl | ⊢ ( 𝑊 ∈ PreHil → ∀ 𝑥 ∈ 𝑉 ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ) |
| 12 | oveq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) ) | |
| 13 | 12 | anidms | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) ) |
| 14 | 13 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 , 𝑥 ) = 𝑍 ↔ ( 𝐴 , 𝐴 ) = 𝑍 ) ) |
| 15 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 0 ↔ 𝐴 = 0 ) ) | |
| 16 | 14 15 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ↔ ( ( 𝐴 , 𝐴 ) = 𝑍 → 𝐴 = 0 ) ) ) |
| 17 | 16 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑉 ( ( 𝑥 , 𝑥 ) = 𝑍 → 𝑥 = 0 ) ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 𝑍 → 𝐴 = 0 ) ) |
| 18 | 11 17 | sylan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 𝑍 → 𝐴 = 0 ) ) |
| 19 | 1 2 3 4 5 | ip0l | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 0 , 𝐴 ) = 𝑍 ) |
| 20 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 , 𝐴 ) = ( 0 , 𝐴 ) ) | |
| 21 | 20 | eqeq1d | ⊢ ( 𝐴 = 0 → ( ( 𝐴 , 𝐴 ) = 𝑍 ↔ ( 0 , 𝐴 ) = 𝑍 ) ) |
| 22 | 19 21 | syl5ibrcom | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 = 0 → ( 𝐴 , 𝐴 ) = 𝑍 ) ) |
| 23 | 18 22 | impbid | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝐴 , 𝐴 ) = 𝑍 ↔ 𝐴 = 0 ) ) |