This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tcphcph : the triangle inequality. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | ||
| tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| tcphcph.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) | ||
| tcphcph.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) | ||
| tcphcph.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| tcphcph.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| tcphcphlem1.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| tcphcphlem1.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | tcphcphlem1 | ⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 5 | tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | |
| 6 | tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 7 | tcphcph.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) | |
| 8 | tcphcph.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) | |
| 9 | tcphcph.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 10 | tcphcph.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 11 | tcphcphlem1.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 12 | tcphcphlem1.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 13 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 14 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 15 | 4 13 14 | 3syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 16 | 2 10 | grpsubcl | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 17 | 15 11 12 16 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 − 𝑌 ) ∈ 𝑉 ) |
| 18 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑 ∧ ( 𝑋 − 𝑌 ) ∈ 𝑉 ) → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ∈ ℝ ) |
| 19 | 17 18 | mpdan | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ∈ ℝ ) |
| 20 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℝ ) |
| 21 | 11 20 | mpdan | ⊢ ( 𝜑 → ( 𝑋 , 𝑋 ) ∈ ℝ ) |
| 22 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 23 | 12 22 | mpdan | ⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 24 | 21 23 | readdcld | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ ℝ ) |
| 25 | 1 2 3 4 5 | phclm | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 26 | 3 9 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 28 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 29 | 4 11 12 28 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 30 | 27 29 | sseldd | ⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) ∈ ℂ ) |
| 31 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑌 , 𝑋 ) ∈ 𝐾 ) |
| 32 | 4 12 11 31 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 , 𝑋 ) ∈ 𝐾 ) |
| 33 | 27 32 | sseldd | ⊢ ( 𝜑 → ( 𝑌 , 𝑋 ) ∈ ℂ ) |
| 34 | 30 33 | addcld | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ∈ ℂ ) |
| 35 | 34 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ∈ ℝ ) |
| 36 | 24 35 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ∈ ℝ ) |
| 37 | 21 | recnd | ⊢ ( 𝜑 → ( 𝑋 , 𝑋 ) ∈ ℂ ) |
| 38 | 2re | ⊢ 2 ∈ ℝ | |
| 39 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑥 = 𝑋 ) → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) | |
| 40 | 39 | anidms | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) |
| 41 | 40 | breq2d | ⊢ ( 𝑥 = 𝑋 → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( 𝑋 , 𝑋 ) ) ) |
| 42 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 43 | 41 42 11 | rspcdva | ⊢ ( 𝜑 → 0 ≤ ( 𝑋 , 𝑋 ) ) |
| 44 | 21 43 | resqrtcld | ⊢ ( 𝜑 → ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ ℝ ) |
| 45 | oveq12 | ⊢ ( ( 𝑥 = 𝑌 ∧ 𝑥 = 𝑌 ) → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) | |
| 46 | 45 | anidms | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) |
| 47 | 46 | breq2d | ⊢ ( 𝑥 = 𝑌 → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( 𝑌 , 𝑌 ) ) ) |
| 48 | 47 42 12 | rspcdva | ⊢ ( 𝜑 → 0 ≤ ( 𝑌 , 𝑌 ) ) |
| 49 | 23 48 | resqrtcld | ⊢ ( 𝜑 → ( √ ‘ ( 𝑌 , 𝑌 ) ) ∈ ℝ ) |
| 50 | 44 49 | remulcld | ⊢ ( 𝜑 → ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ) |
| 51 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ) → ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ∈ ℝ ) | |
| 52 | 38 50 51 | sylancr | ⊢ ( 𝜑 → ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ∈ ℝ ) |
| 53 | 52 | recnd | ⊢ ( 𝜑 → ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ∈ ℂ ) |
| 54 | 23 | recnd | ⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℂ ) |
| 55 | 37 53 54 | add32d | ⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 56 | 24 52 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ∈ ℝ ) |
| 57 | 55 56 | eqeltrd | ⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ∈ ℝ ) |
| 58 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑋 − 𝑌 ) ∧ 𝑥 = ( 𝑋 − 𝑌 ) ) → ( 𝑥 , 𝑥 ) = ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) | |
| 59 | 58 | anidms | ⊢ ( 𝑥 = ( 𝑋 − 𝑌 ) → ( 𝑥 , 𝑥 ) = ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 60 | 59 | breq2d | ⊢ ( 𝑥 = ( 𝑋 − 𝑌 ) → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ) |
| 61 | 60 42 17 | rspcdva | ⊢ ( 𝜑 → 0 ≤ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 62 | 19 61 | absidd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) = ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 63 | 3 | clmadd | ⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ 𝐹 ) ) |
| 64 | 25 63 | syl | ⊢ ( 𝜑 → + = ( +g ‘ 𝐹 ) ) |
| 65 | 64 | oveqd | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) = ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ) |
| 66 | 64 | oveqd | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) = ( ( 𝑋 , 𝑌 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) ) |
| 67 | 65 66 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) = ( ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) ) ) |
| 68 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ 𝐾 ) |
| 69 | 4 11 11 68 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 , 𝑋 ) ∈ 𝐾 ) |
| 70 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 , 𝑌 ) ∈ 𝐾 ) |
| 71 | 4 12 12 70 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ 𝐾 ) |
| 72 | 3 9 | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑋 , 𝑋 ) ∈ 𝐾 ∧ ( 𝑌 , 𝑌 ) ∈ 𝐾 ) → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ) |
| 73 | 25 69 71 72 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ) |
| 74 | 3 9 | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑋 , 𝑌 ) ∈ 𝐾 ∧ ( 𝑌 , 𝑋 ) ∈ 𝐾 ) → ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) |
| 75 | 25 29 32 74 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) |
| 76 | 3 9 | clmsub | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ∧ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) |
| 77 | 25 73 75 76 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) |
| 78 | eqid | ⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) | |
| 79 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 80 | 3 6 2 10 78 79 4 11 12 11 12 | ip2subdi | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) = ( ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , 𝑌 ) ( +g ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) ) ) |
| 81 | 67 77 80 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) |
| 82 | 81 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) = ( abs ‘ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 83 | 62 82 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) = ( abs ‘ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 84 | 27 73 | sseldd | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ∈ ℂ ) |
| 85 | 84 34 | abs2dif2d | ⊢ ( 𝜑 → ( abs ‘ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) − ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ≤ ( ( abs ‘ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 86 | 83 85 | eqbrtrd | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ≤ ( ( abs ‘ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 87 | 21 23 43 48 | addge0d | ⊢ ( 𝜑 → 0 ≤ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) |
| 88 | 24 87 | absidd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) = ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) |
| 89 | 88 | oveq1d | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 90 | 86 89 | breqtrd | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ≤ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ) |
| 91 | 30 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℝ ) |
| 92 | remulcl | ⊢ ( ( 2 ∈ ℝ ∧ ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℝ ) → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ∈ ℝ ) | |
| 93 | 38 91 92 | sylancr | ⊢ ( 𝜑 → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ∈ ℝ ) |
| 94 | 30 33 | abstrid | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ≤ ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑌 , 𝑋 ) ) ) ) |
| 95 | 91 | recnd | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℂ ) |
| 96 | 95 | 2timesd | ⊢ ( 𝜑 → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) = ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ) |
| 97 | 30 | abscjd | ⊢ ( 𝜑 → ( abs ‘ ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) = ( abs ‘ ( 𝑋 , 𝑌 ) ) ) |
| 98 | 3 | clmcj | ⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 99 | 25 98 | syl | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 100 | 99 | fveq1d | ⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 , 𝑌 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) ) |
| 101 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 102 | 3 6 2 101 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 103 | 4 11 12 102 | syl3anc | ⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 104 | 100 103 | eqtrd | ⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 105 | 104 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) = ( abs ‘ ( 𝑌 , 𝑋 ) ) ) |
| 106 | 97 105 | eqtr3d | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) = ( abs ‘ ( 𝑌 , 𝑋 ) ) ) |
| 107 | 106 | oveq2d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑋 , 𝑌 ) ) ) = ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑌 , 𝑋 ) ) ) ) |
| 108 | 96 107 | eqtrd | ⊢ ( 𝜑 → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) = ( ( abs ‘ ( 𝑋 , 𝑌 ) ) + ( abs ‘ ( 𝑌 , 𝑋 ) ) ) ) |
| 109 | 94 108 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ≤ ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ) |
| 110 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 111 | eqid | ⊢ ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) = ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) | |
| 112 | 1 2 3 4 5 6 7 8 9 110 111 11 12 | ipcau2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( ( norm ‘ 𝐺 ) ‘ 𝑋 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 113 | 1 110 2 6 | tcphnmval | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 114 | 15 11 113 | syl2anc | ⊢ ( 𝜑 → ( ( norm ‘ 𝐺 ) ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 115 | 1 110 2 6 | tcphnmval | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉 ) → ( ( norm ‘ 𝐺 ) ‘ 𝑌 ) = ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 116 | 15 12 115 | syl2anc | ⊢ ( 𝜑 → ( ( norm ‘ 𝐺 ) ‘ 𝑌 ) = ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 117 | 114 116 | oveq12d | ⊢ ( 𝜑 → ( ( ( norm ‘ 𝐺 ) ‘ 𝑋 ) · ( ( norm ‘ 𝐺 ) ‘ 𝑌 ) ) = ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 118 | 112 117 | breqtrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 119 | 38 | a1i | ⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 120 | 2pos | ⊢ 0 < 2 | |
| 121 | 120 | a1i | ⊢ ( 𝜑 → 0 < 2 ) |
| 122 | lemul2 | ⊢ ( ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℝ ∧ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↔ ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) | |
| 123 | 91 50 119 121 122 | syl112anc | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↔ ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 124 | 118 123 | mpbid | ⊢ ( 𝜑 → ( 2 · ( abs ‘ ( 𝑋 , 𝑌 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) |
| 125 | 35 93 52 109 124 | letrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) |
| 126 | 35 52 24 125 | leadd2dd | ⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ≤ ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 127 | 126 55 | breqtrrd | ⊢ ( 𝜑 → ( ( ( 𝑋 , 𝑋 ) + ( 𝑌 , 𝑌 ) ) + ( abs ‘ ( ( 𝑋 , 𝑌 ) + ( 𝑌 , 𝑋 ) ) ) ) ≤ ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ) |
| 128 | 19 36 57 90 127 | letrd | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ≤ ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ) |
| 129 | 19 | recnd | ⊢ ( 𝜑 → ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ∈ ℂ ) |
| 130 | 129 | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ↑ 2 ) = ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) |
| 131 | 37 | sqrtcld | ⊢ ( 𝜑 → ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ ℂ ) |
| 132 | 49 | recnd | ⊢ ( 𝜑 → ( √ ‘ ( 𝑌 , 𝑌 ) ) ∈ ℂ ) |
| 133 | binom2 | ⊢ ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ ℂ ∧ ( √ ‘ ( 𝑌 , 𝑌 ) ) ∈ ℂ ) → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) ) ) | |
| 134 | 131 132 133 | syl2anc | ⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) ) ) |
| 135 | 37 | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) = ( 𝑋 , 𝑋 ) ) |
| 136 | 135 | oveq1d | ⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) = ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) ) |
| 137 | 54 | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) = ( 𝑌 , 𝑌 ) ) |
| 138 | 136 137 | oveq12d | ⊢ ( 𝜑 → ( ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) ) = ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ) |
| 139 | 134 138 | eqtrd | ⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) = ( ( ( 𝑋 , 𝑋 ) + ( 2 · ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) ) + ( 𝑌 , 𝑌 ) ) ) |
| 140 | 128 130 139 | 3brtr4d | ⊢ ( 𝜑 → ( ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ↑ 2 ) ≤ ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) ) |
| 141 | 19 61 | resqrtcld | ⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ∈ ℝ ) |
| 142 | 44 49 | readdcld | ⊢ ( 𝜑 → ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ) |
| 143 | 19 61 | sqrtge0d | ⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ) |
| 144 | 21 43 | sqrtge0d | ⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 145 | 23 48 | sqrtge0d | ⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 146 | 44 49 144 145 | addge0d | ⊢ ( 𝜑 → 0 ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 147 | 141 142 143 146 | le2sqd | ⊢ ( 𝜑 → ( ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↔ ( ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ↑ 2 ) ≤ ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) ) ) |
| 148 | 140 147 | mpbird | ⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 − 𝑌 ) , ( 𝑋 − 𝑌 ) ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) + ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |