This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tcphcph : real closure of an inner product of a vector with itself. (Contributed by Mario Carneiro, 10-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | ||
| tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| Assertion | tcphcphlem3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 5 | tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | |
| 6 | tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 7 | 1 2 3 4 5 | phclm | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 10 | 3 9 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 12 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) ) |
| 13 | 12 | 3anidm23 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) ) |
| 14 | 4 13 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ( Base ‘ 𝐹 ) ) |
| 15 | 11 14 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℂ ) |
| 16 | 3 | clmcj | ⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 17 | 8 16 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 18 | 17 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑋 , 𝑋 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) ) |
| 19 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ PreHil ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 21 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 22 | 3 6 2 21 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) ) |
| 23 | 19 20 20 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) ) |
| 24 | 18 23 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( ∗ ‘ ( 𝑋 , 𝑋 ) ) = ( 𝑋 , 𝑋 ) ) |
| 25 | 15 24 | cjrebd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℝ ) |