This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space. Part of Lemma 3.2-1(a) of Kreyszig p. 137. This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcau.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| ipcau.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| ipcau.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| Assertion | ipcau | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcau.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | ipcau.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | ipcau.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( toℂPreHil ‘ 𝑊 ) = ( toℂPreHil ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | simp1 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ ℂPreHil ) | |
| 7 | cphphl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) | |
| 8 | 6 7 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑊 ∈ PreHil ) |
| 9 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 10 | 5 9 | cphsca | ⊢ ( 𝑊 ∈ ℂPreHil → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 11 | 6 10 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 12 | 5 9 | cphsqrtcl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 13 | 6 12 | sylan | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 | 1 2 | ipge0 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 15 | 6 14 | sylan | ⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 16 | eqid | ⊢ ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) = ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) | |
| 17 | eqid | ⊢ ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) = ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) | |
| 18 | simp2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 19 | simp3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ 𝑉 ) | |
| 20 | 4 1 5 8 11 2 13 15 9 16 17 18 19 | ipcau2 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑋 ) · ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑌 ) ) ) |
| 21 | 4 3 | cphtcphnm | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ) |
| 22 | 6 21 | syl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → 𝑁 = ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ) |
| 23 | 22 | fveq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑋 ) ) |
| 24 | 22 | fveq1d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑌 ) = ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑌 ) ) |
| 25 | 23 24 | oveq12d | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑋 ) · ( ( norm ‘ ( toℂPreHil ‘ 𝑊 ) ) ‘ 𝑌 ) ) ) |
| 26 | 20 25 | breqtrrd | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |