This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the field of complex numbers. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfldnm | ⊢ abs = ( norm ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 3 | 2 | cnmetdval | ⊢ ( ( 𝑥 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
| 4 | 1 3 | mpan2 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑥 − 0 ) ) ) |
| 5 | subid1 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 − 0 ) = 𝑥 ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑥 ∈ ℂ → ( abs ‘ ( 𝑥 − 0 ) ) = ( abs ‘ 𝑥 ) ) |
| 7 | 4 6 | eqtrd | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑥 ) ) |
| 8 | 7 | mpteq2ia | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ( abs ∘ − ) 0 ) ) = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) |
| 9 | eqid | ⊢ ( norm ‘ ℂfld ) = ( norm ‘ ℂfld ) | |
| 10 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 11 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 12 | cnfldds | ⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) | |
| 13 | 9 10 11 12 | nmfval | ⊢ ( norm ‘ ℂfld ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ( abs ∘ − ) 0 ) ) |
| 14 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 15 | 14 | a1i | ⊢ ( ⊤ → abs : ℂ ⟶ ℝ ) |
| 16 | 15 | feqmptd | ⊢ ( ⊤ → abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) ) |
| 17 | 16 | mptru | ⊢ abs = ( 𝑥 ∈ ℂ ↦ ( abs ‘ 𝑥 ) ) |
| 18 | 8 13 17 | 3eqtr4ri | ⊢ abs = ( norm ‘ ℂfld ) |