This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the inner product operation in a pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipcl.f | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipcl.f | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) | |
| 6 | 1 2 3 5 | phllmhm | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 7 | rlmbas | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) | |
| 8 | 4 7 | eqtri | ⊢ 𝐾 = ( Base ‘ ( ringLMod ‘ 𝐹 ) ) |
| 9 | 3 8 | lmhmf | ⊢ ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) : 𝑉 ⟶ 𝐾 ) |
| 10 | 6 9 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) : 𝑉 ⟶ 𝐾 ) |
| 11 | 5 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐵 ) ∈ 𝐾 ↔ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐵 ) ) : 𝑉 ⟶ 𝐾 ) |
| 12 | 10 11 | sylibr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐵 ) ∈ 𝐾 ) |
| 13 | oveq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 , 𝐵 ) = ( 𝐴 , 𝐵 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 , 𝐵 ) ∈ 𝐾 ↔ ( 𝐴 , 𝐵 ) ∈ 𝐾 ) ) |
| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 , 𝐵 ) ∈ 𝐾 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
| 16 | 12 15 | stoic3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |
| 17 | 16 | 3com23 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ 𝐾 ) |