This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Augmentation of a subcomplex pre-Hilbert space with a norm does not affect whether it is still a pre-Hilbert space (because all the original components are the same). (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| Assertion | tcphphl | ⊢ ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | eqidd | ⊢ ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 4 | 1 3 | tcphbas | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) |
| 5 | 4 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝑊 ) = ( Base ‘ 𝐺 ) ) |
| 6 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 7 | 1 6 | tchplusg | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝐺 ) |
| 8 | 7 | a1i | ⊢ ( ⊤ → ( +g ‘ 𝑊 ) = ( +g ‘ 𝐺 ) ) |
| 9 | 8 | oveqdr | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( +g ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) |
| 10 | eqidd | ⊢ ( ⊤ → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) ) | |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | 1 11 | tcphsca | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝐺 ) |
| 13 | 12 | a1i | ⊢ ( ⊤ → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝐺 ) ) |
| 14 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 15 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 16 | 1 15 | tcphvsca | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) |
| 17 | 16 | a1i | ⊢ ( ⊤ → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝐺 ) ) |
| 18 | 17 | oveqdr | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐺 ) 𝑦 ) ) |
| 19 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 20 | 1 19 | tcphip | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝐺 ) |
| 21 | 20 | a1i | ⊢ ( ⊤ → ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝐺 ) ) |
| 22 | 21 | oveqdr | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝐺 ) 𝑦 ) ) |
| 23 | 2 5 9 10 13 14 18 22 | phlpropd | ⊢ ( ⊤ → ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) ) |
| 24 | 23 | mptru | ⊢ ( 𝑊 ∈ PreHil ↔ 𝐺 ∈ PreHil ) |