This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left module is a group. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 5 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 6 | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 8 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 9 | 1 2 3 4 5 6 7 8 | islmod | ⊢ ( 𝑊 ∈ LMod ↔ ( 𝑊 ∈ Grp ∧ ( Scalar ‘ 𝑊 ) ∈ Ring ∧ ∀ 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑟 ( ·𝑠 ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) ) = ( ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) ∧ ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( ( 𝑞 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) ∧ ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = ( 𝑞 ( ·𝑠 ‘ 𝑊 ) ( 𝑟 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑤 ) = 𝑤 ) ) ) ) |
| 10 | 9 | simp1bi | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |