This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derive the axioms for a normed group from the axioms for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngngp.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngngp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| tngngp.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| tngngp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| tngngpd.1 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| tngngpd.2 | ⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ ℝ ) | ||
| tngngpd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | ||
| tngngpd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) | ||
| Assertion | tngngpd | ⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngp.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngngp.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | tngngp.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | tngngp.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | tngngpd.1 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 6 | tngngpd.2 | ⊢ ( 𝜑 → 𝑁 : 𝑋 ⟶ ℝ ) | |
| 7 | tngngpd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | |
| 8 | tngngpd.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑁 ‘ ( 𝑥 − 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) | |
| 9 | 2 | fvexi | ⊢ 𝑋 ∈ V |
| 10 | reex | ⊢ ℝ ∈ V | |
| 11 | fex2 | ⊢ ( ( 𝑁 : 𝑋 ⟶ ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V ) → 𝑁 ∈ V ) | |
| 12 | 9 10 11 | mp3an23 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → 𝑁 ∈ V ) |
| 13 | 1 3 | tngds | ⊢ ( 𝑁 ∈ V → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
| 14 | 6 12 13 | 3syl | ⊢ ( 𝜑 → ( 𝑁 ∘ − ) = ( dist ‘ 𝑇 ) ) |
| 15 | 2 3 4 5 6 7 8 | nrmmetd | ⊢ ( 𝜑 → ( 𝑁 ∘ − ) ∈ ( Met ‘ 𝑋 ) ) |
| 16 | 14 15 | eqeltrrd | ⊢ ( 𝜑 → ( dist ‘ 𝑇 ) ∈ ( Met ‘ 𝑋 ) ) |
| 17 | eqid | ⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) | |
| 18 | 1 2 17 | tngngp2 | ⊢ ( 𝑁 : 𝑋 ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ 𝑋 ) ) ) ) |
| 19 | 6 18 | syl | ⊢ ( 𝜑 → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ 𝑋 ) ) ) ) |
| 20 | 5 16 19 | mpbir2and | ⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) |