This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem lvecdrng

Description: The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014)

Ref Expression
Hypothesis islvec.1 𝐹 = ( Scalar ‘ 𝑊 )
Assertion lvecdrng ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing )

Proof

Step Hyp Ref Expression
1 islvec.1 𝐹 = ( Scalar ‘ 𝑊 )
2 1 islvec ( 𝑊 ∈ LVec ↔ ( 𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing ) )
3 2 simprbi ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing )