This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The standard definition of a norm turns any pre-Hilbert space over a subfield of CCfld closed under square roots of nonnegative reals into a subcomplex pre-Hilbert space (which allows access to a norm, metric, and topology). (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphcph.v | |- V = ( Base ` W ) |
||
| tcphcph.f | |- F = ( Scalar ` W ) |
||
| tcphcph.1 | |- ( ph -> W e. PreHil ) |
||
| tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
||
| tcphcph.h | |- ., = ( .i ` W ) |
||
| tcphcph.3 | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
||
| tcphcph.4 | |- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
||
| Assertion | tcphcph | |- ( ph -> G e. CPreHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphcph.v | |- V = ( Base ` W ) |
|
| 3 | tcphcph.f | |- F = ( Scalar ` W ) |
|
| 4 | tcphcph.1 | |- ( ph -> W e. PreHil ) |
|
| 5 | tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
|
| 6 | tcphcph.h | |- ., = ( .i ` W ) |
|
| 7 | tcphcph.3 | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
|
| 8 | tcphcph.4 | |- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
|
| 9 | 1 | tcphphl | |- ( W e. PreHil <-> G e. PreHil ) |
| 10 | 4 9 | sylib | |- ( ph -> G e. PreHil ) |
| 11 | 1 2 6 | tcphval | |- G = ( W toNrmGrp ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ) |
| 12 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 13 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 14 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 15 | 4 14 | syl | |- ( ph -> W e. LMod ) |
| 16 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 17 | 15 16 | syl | |- ( ph -> W e. Grp ) |
| 18 | 1 2 3 4 5 6 | tcphcphlem3 | |- ( ( ph /\ x e. V ) -> ( x ., x ) e. RR ) |
| 19 | 18 8 | resqrtcld | |- ( ( ph /\ x e. V ) -> ( sqrt ` ( x ., x ) ) e. RR ) |
| 20 | 19 | fmpttd | |- ( ph -> ( x e. V |-> ( sqrt ` ( x ., x ) ) ) : V --> RR ) |
| 21 | oveq12 | |- ( ( x = y /\ x = y ) -> ( x ., x ) = ( y ., y ) ) |
|
| 22 | 21 | anidms | |- ( x = y -> ( x ., x ) = ( y ., y ) ) |
| 23 | 22 | fveq2d | |- ( x = y -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( y ., y ) ) ) |
| 24 | eqid | |- ( x e. V |-> ( sqrt ` ( x ., x ) ) ) = ( x e. V |-> ( sqrt ` ( x ., x ) ) ) |
|
| 25 | fvex | |- ( sqrt ` ( x ., x ) ) e. _V |
|
| 26 | 23 24 25 | fvmpt3i | |- ( y e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = ( sqrt ` ( y ., y ) ) ) |
| 27 | 26 | adantl | |- ( ( ph /\ y e. V ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = ( sqrt ` ( y ., y ) ) ) |
| 28 | 27 | eqeq1d | |- ( ( ph /\ y e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
| 29 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 30 | phllvec | |- ( W e. PreHil -> W e. LVec ) |
|
| 31 | 4 30 | syl | |- ( ph -> W e. LVec ) |
| 32 | 3 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 33 | 31 32 | syl | |- ( ph -> F e. DivRing ) |
| 34 | 29 5 33 | cphsubrglem | |- ( ph -> ( F = ( CCfld |`s ( Base ` F ) ) /\ ( Base ` F ) = ( K i^i CC ) /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) ) |
| 35 | 34 | simp2d | |- ( ph -> ( Base ` F ) = ( K i^i CC ) ) |
| 36 | inss2 | |- ( K i^i CC ) C_ CC |
|
| 37 | 35 36 | eqsstrdi | |- ( ph -> ( Base ` F ) C_ CC ) |
| 38 | 37 | adantr | |- ( ( ph /\ y e. V ) -> ( Base ` F ) C_ CC ) |
| 39 | 3 6 2 29 | ipcl | |- ( ( W e. PreHil /\ y e. V /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
| 40 | 39 | 3anidm23 | |- ( ( W e. PreHil /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
| 41 | 4 40 | sylan | |- ( ( ph /\ y e. V ) -> ( y ., y ) e. ( Base ` F ) ) |
| 42 | 38 41 | sseldd | |- ( ( ph /\ y e. V ) -> ( y ., y ) e. CC ) |
| 43 | 42 | sqrtcld | |- ( ( ph /\ y e. V ) -> ( sqrt ` ( y ., y ) ) e. CC ) |
| 44 | sqeq0 | |- ( ( sqrt ` ( y ., y ) ) e. CC -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
|
| 45 | 43 44 | syl | |- ( ( ph /\ y e. V ) -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( sqrt ` ( y ., y ) ) = 0 ) ) |
| 46 | 42 | sqsqrtd | |- ( ( ph /\ y e. V ) -> ( ( sqrt ` ( y ., y ) ) ^ 2 ) = ( y ., y ) ) |
| 47 | 1 2 3 4 5 | phclm | |- ( ph -> W e. CMod ) |
| 48 | 3 | clm0 | |- ( W e. CMod -> 0 = ( 0g ` F ) ) |
| 49 | 47 48 | syl | |- ( ph -> 0 = ( 0g ` F ) ) |
| 50 | 49 | adantr | |- ( ( ph /\ y e. V ) -> 0 = ( 0g ` F ) ) |
| 51 | 46 50 | eqeq12d | |- ( ( ph /\ y e. V ) -> ( ( ( sqrt ` ( y ., y ) ) ^ 2 ) = 0 <-> ( y ., y ) = ( 0g ` F ) ) ) |
| 52 | 45 51 | bitr3d | |- ( ( ph /\ y e. V ) -> ( ( sqrt ` ( y ., y ) ) = 0 <-> ( y ., y ) = ( 0g ` F ) ) ) |
| 53 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 54 | 3 6 2 53 13 | ipeq0 | |- ( ( W e. PreHil /\ y e. V ) -> ( ( y ., y ) = ( 0g ` F ) <-> y = ( 0g ` W ) ) ) |
| 55 | 4 54 | sylan | |- ( ( ph /\ y e. V ) -> ( ( y ., y ) = ( 0g ` F ) <-> y = ( 0g ` W ) ) ) |
| 56 | 28 52 55 | 3bitrd | |- ( ( ph /\ y e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) = 0 <-> y = ( 0g ` W ) ) ) |
| 57 | 4 | adantr | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> W e. PreHil ) |
| 58 | 34 | simp1d | |- ( ph -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 59 | 58 | adantr | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 60 | 3anass | |- ( ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
|
| 61 | simpr2 | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> x e. RR ) |
|
| 62 | 61 | recnd | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> x e. CC ) |
| 63 | 62 | sqrtcld | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. CC ) |
| 64 | 7 63 | jca | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) |
| 65 | 64 | ex | |- ( ph -> ( ( x e. K /\ x e. RR /\ 0 <_ x ) -> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) ) |
| 66 | 35 | eleq2d | |- ( ph -> ( x e. ( Base ` F ) <-> x e. ( K i^i CC ) ) ) |
| 67 | recn | |- ( x e. RR -> x e. CC ) |
|
| 68 | elin | |- ( x e. ( K i^i CC ) <-> ( x e. K /\ x e. CC ) ) |
|
| 69 | 68 | rbaib | |- ( x e. CC -> ( x e. ( K i^i CC ) <-> x e. K ) ) |
| 70 | 67 69 | syl | |- ( x e. RR -> ( x e. ( K i^i CC ) <-> x e. K ) ) |
| 71 | 66 70 | sylan9bb | |- ( ( ph /\ x e. RR ) -> ( x e. ( Base ` F ) <-> x e. K ) ) |
| 72 | 71 | adantrr | |- ( ( ph /\ ( x e. RR /\ 0 <_ x ) ) -> ( x e. ( Base ` F ) <-> x e. K ) ) |
| 73 | 72 | ex | |- ( ph -> ( ( x e. RR /\ 0 <_ x ) -> ( x e. ( Base ` F ) <-> x e. K ) ) ) |
| 74 | 73 | pm5.32rd | |- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) <-> ( x e. K /\ ( x e. RR /\ 0 <_ x ) ) ) ) |
| 75 | 3anass | |- ( ( x e. K /\ x e. RR /\ 0 <_ x ) <-> ( x e. K /\ ( x e. RR /\ 0 <_ x ) ) ) |
|
| 76 | 74 75 | bitr4di | |- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) <-> ( x e. K /\ x e. RR /\ 0 <_ x ) ) ) |
| 77 | 35 | eleq2d | |- ( ph -> ( ( sqrt ` x ) e. ( Base ` F ) <-> ( sqrt ` x ) e. ( K i^i CC ) ) ) |
| 78 | elin | |- ( ( sqrt ` x ) e. ( K i^i CC ) <-> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) |
|
| 79 | 77 78 | bitrdi | |- ( ph -> ( ( sqrt ` x ) e. ( Base ` F ) <-> ( ( sqrt ` x ) e. K /\ ( sqrt ` x ) e. CC ) ) ) |
| 80 | 65 76 79 | 3imtr4d | |- ( ph -> ( ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 81 | 60 80 | biimtrid | |- ( ph -> ( ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 82 | 81 | imp | |- ( ( ph /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
| 83 | 82 | adantlr | |- ( ( ( ph /\ ( y e. V /\ z e. V ) ) /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
| 84 | 8 | adantlr | |- ( ( ( ph /\ ( y e. V /\ z e. V ) ) /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 85 | simprl | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> y e. V ) |
|
| 86 | simprr | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> z e. V ) |
|
| 87 | 1 2 3 57 59 6 83 84 29 12 85 86 | tcphcphlem1 | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) <_ ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
| 88 | 2 12 | grpsubcl | |- ( ( W e. Grp /\ y e. V /\ z e. V ) -> ( y ( -g ` W ) z ) e. V ) |
| 89 | 88 | 3expb | |- ( ( W e. Grp /\ ( y e. V /\ z e. V ) ) -> ( y ( -g ` W ) z ) e. V ) |
| 90 | 17 89 | sylan | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y ( -g ` W ) z ) e. V ) |
| 91 | oveq12 | |- ( ( x = ( y ( -g ` W ) z ) /\ x = ( y ( -g ` W ) z ) ) -> ( x ., x ) = ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) |
|
| 92 | 91 | anidms | |- ( x = ( y ( -g ` W ) z ) -> ( x ., x ) = ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) |
| 93 | 92 | fveq2d | |- ( x = ( y ( -g ` W ) z ) -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
| 94 | 93 24 25 | fvmpt3i | |- ( ( y ( -g ` W ) z ) e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
| 95 | 90 94 | syl | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) = ( sqrt ` ( ( y ( -g ` W ) z ) ., ( y ( -g ` W ) z ) ) ) ) |
| 96 | oveq12 | |- ( ( x = z /\ x = z ) -> ( x ., x ) = ( z ., z ) ) |
|
| 97 | 96 | anidms | |- ( x = z -> ( x ., x ) = ( z ., z ) ) |
| 98 | 97 | fveq2d | |- ( x = z -> ( sqrt ` ( x ., x ) ) = ( sqrt ` ( z ., z ) ) ) |
| 99 | 98 24 25 | fvmpt3i | |- ( z e. V -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
| 100 | 26 99 | oveqan12d | |- ( ( y e. V /\ z e. V ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) = ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
| 101 | 100 | adantl | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) = ( ( sqrt ` ( y ., y ) ) + ( sqrt ` ( z ., z ) ) ) ) |
| 102 | 87 95 101 | 3brtr4d | |- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` ( y ( -g ` W ) z ) ) <_ ( ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` y ) + ( ( x e. V |-> ( sqrt ` ( x ., x ) ) ) ` z ) ) ) |
| 103 | 11 2 12 13 17 20 56 102 | tngngpd | |- ( ph -> G e. NrmGrp ) |
| 104 | phllmod | |- ( G e. PreHil -> G e. LMod ) |
|
| 105 | 10 104 | syl | |- ( ph -> G e. LMod ) |
| 106 | cnnrg | |- CCfld e. NrmRing |
|
| 107 | 34 | simp3d | |- ( ph -> ( Base ` F ) e. ( SubRing ` CCfld ) ) |
| 108 | eqid | |- ( CCfld |`s ( Base ` F ) ) = ( CCfld |`s ( Base ` F ) ) |
|
| 109 | 108 | subrgnrg | |- ( ( CCfld e. NrmRing /\ ( Base ` F ) e. ( SubRing ` CCfld ) ) -> ( CCfld |`s ( Base ` F ) ) e. NrmRing ) |
| 110 | 106 107 109 | sylancr | |- ( ph -> ( CCfld |`s ( Base ` F ) ) e. NrmRing ) |
| 111 | 58 110 | eqeltrd | |- ( ph -> F e. NrmRing ) |
| 112 | 103 105 111 | 3jca | |- ( ph -> ( G e. NrmGrp /\ G e. LMod /\ F e. NrmRing ) ) |
| 113 | 4 | adantr | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> W e. PreHil ) |
| 114 | 58 | adantr | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> F = ( CCfld |`s ( Base ` F ) ) ) |
| 115 | 82 | adantlr | |- ( ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) /\ ( x e. ( Base ` F ) /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) |
| 116 | 8 | adantlr | |- ( ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) /\ x e. V ) -> 0 <_ ( x ., x ) ) |
| 117 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 118 | simprl | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> y e. ( Base ` F ) ) |
|
| 119 | simprr | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> z e. V ) |
|
| 120 | 1 2 3 113 114 6 115 116 29 117 118 119 | tcphcphlem2 | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) = ( ( abs ` y ) x. ( sqrt ` ( z ., z ) ) ) ) |
| 121 | 2 3 117 29 | lmodvscl | |- ( ( W e. LMod /\ y e. ( Base ` F ) /\ z e. V ) -> ( y ( .s ` W ) z ) e. V ) |
| 122 | 121 | 3expb | |- ( ( W e. LMod /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( y ( .s ` W ) z ) e. V ) |
| 123 | 15 122 | sylan | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( y ( .s ` W ) z ) e. V ) |
| 124 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 125 | 1 124 2 6 | tcphnmval | |- ( ( W e. Grp /\ ( y ( .s ` W ) z ) e. V ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) ) |
| 126 | 17 123 125 | syl2an2r | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( sqrt ` ( ( y ( .s ` W ) z ) ., ( y ( .s ` W ) z ) ) ) ) |
| 127 | 114 | fveq2d | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( norm ` F ) = ( norm ` ( CCfld |`s ( Base ` F ) ) ) ) |
| 128 | 127 | fveq1d | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` F ) ` y ) = ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) ) |
| 129 | subrgsubg | |- ( ( Base ` F ) e. ( SubRing ` CCfld ) -> ( Base ` F ) e. ( SubGrp ` CCfld ) ) |
|
| 130 | 107 129 | syl | |- ( ph -> ( Base ` F ) e. ( SubGrp ` CCfld ) ) |
| 131 | cnfldnm | |- abs = ( norm ` CCfld ) |
|
| 132 | eqid | |- ( norm ` ( CCfld |`s ( Base ` F ) ) ) = ( norm ` ( CCfld |`s ( Base ` F ) ) ) |
|
| 133 | 108 131 132 | subgnm2 | |- ( ( ( Base ` F ) e. ( SubGrp ` CCfld ) /\ y e. ( Base ` F ) ) -> ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) = ( abs ` y ) ) |
| 134 | 130 118 133 | syl2an2r | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` ( CCfld |`s ( Base ` F ) ) ) ` y ) = ( abs ` y ) ) |
| 135 | 128 134 | eqtrd | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` F ) ` y ) = ( abs ` y ) ) |
| 136 | 1 124 2 6 | tcphnmval | |- ( ( W e. Grp /\ z e. V ) -> ( ( norm ` G ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
| 137 | 17 119 136 | syl2an2r | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` z ) = ( sqrt ` ( z ., z ) ) ) |
| 138 | 135 137 | oveq12d | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) = ( ( abs ` y ) x. ( sqrt ` ( z ., z ) ) ) ) |
| 139 | 120 126 138 | 3eqtr4d | |- ( ( ph /\ ( y e. ( Base ` F ) /\ z e. V ) ) -> ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) |
| 140 | 139 | ralrimivva | |- ( ph -> A. y e. ( Base ` F ) A. z e. V ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) |
| 141 | 1 2 | tcphbas | |- V = ( Base ` G ) |
| 142 | 1 117 | tcphvsca | |- ( .s ` W ) = ( .s ` G ) |
| 143 | 1 3 | tcphsca | |- F = ( Scalar ` G ) |
| 144 | eqid | |- ( norm ` F ) = ( norm ` F ) |
|
| 145 | 141 124 142 143 29 144 | isnlm | |- ( G e. NrmMod <-> ( ( G e. NrmGrp /\ G e. LMod /\ F e. NrmRing ) /\ A. y e. ( Base ` F ) A. z e. V ( ( norm ` G ) ` ( y ( .s ` W ) z ) ) = ( ( ( norm ` F ) ` y ) x. ( ( norm ` G ) ` z ) ) ) ) |
| 146 | 112 140 145 | sylanbrc | |- ( ph -> G e. NrmMod ) |
| 147 | 10 146 58 | 3jca | |- ( ph -> ( G e. PreHil /\ G e. NrmMod /\ F = ( CCfld |`s ( Base ` F ) ) ) ) |
| 148 | elin | |- ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ x e. ( 0 [,) +oo ) ) ) |
|
| 149 | elrege0 | |- ( x e. ( 0 [,) +oo ) <-> ( x e. RR /\ 0 <_ x ) ) |
|
| 150 | 149 | anbi2i | |- ( ( x e. ( Base ` F ) /\ x e. ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
| 151 | 148 150 | bitri | |- ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) <-> ( x e. ( Base ` F ) /\ ( x e. RR /\ 0 <_ x ) ) ) |
| 152 | 151 80 | biimtrid | |- ( ph -> ( x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) -> ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 153 | 152 | ralrimiv | |- ( ph -> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) |
| 154 | sqrtf | |- sqrt : CC --> CC |
|
| 155 | ffun | |- ( sqrt : CC --> CC -> Fun sqrt ) |
|
| 156 | 154 155 | ax-mp | |- Fun sqrt |
| 157 | inss1 | |- ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ ( Base ` F ) |
|
| 158 | 157 37 | sstrid | |- ( ph -> ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ CC ) |
| 159 | 154 | fdmi | |- dom sqrt = CC |
| 160 | 158 159 | sseqtrrdi | |- ( ph -> ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ dom sqrt ) |
| 161 | funimass4 | |- ( ( Fun sqrt /\ ( ( Base ` F ) i^i ( 0 [,) +oo ) ) C_ dom sqrt ) -> ( ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) <-> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) ) |
|
| 162 | 156 160 161 | sylancr | |- ( ph -> ( ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) <-> A. x e. ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ( sqrt ` x ) e. ( Base ` F ) ) ) |
| 163 | 153 162 | mpbird | |- ( ph -> ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) ) |
| 164 | 43 | fmpttd | |- ( ph -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) : V --> CC ) |
| 165 | 1 2 6 | tcphval | |- G = ( W toNrmGrp ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) |
| 166 | cnex | |- CC e. _V |
|
| 167 | 165 2 166 | tngnm | |- ( ( W e. Grp /\ ( y e. V |-> ( sqrt ` ( y ., y ) ) ) : V --> CC ) -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) = ( norm ` G ) ) |
| 168 | 17 164 167 | syl2anc | |- ( ph -> ( y e. V |-> ( sqrt ` ( y ., y ) ) ) = ( norm ` G ) ) |
| 169 | 168 | eqcomd | |- ( ph -> ( norm ` G ) = ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) |
| 170 | 1 6 | tcphip | |- ., = ( .i ` G ) |
| 171 | 141 170 124 143 29 | iscph | |- ( G e. CPreHil <-> ( ( G e. PreHil /\ G e. NrmMod /\ F = ( CCfld |`s ( Base ` F ) ) ) /\ ( sqrt " ( ( Base ` F ) i^i ( 0 [,) +oo ) ) ) C_ ( Base ` F ) /\ ( norm ` G ) = ( y e. V |-> ( sqrt ` ( y ., y ) ) ) ) ) |
| 172 | 147 163 169 171 | syl3anbrc | |- ( ph -> G e. CPreHil ) |