This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnlm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| isnlm.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| isnlm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| isnlm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| isnlm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| isnlm.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | ||
| Assertion | isnlm | ⊢ ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnlm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | isnlm.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 3 | isnlm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | isnlm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | isnlm.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | isnlm.a | ⊢ 𝐴 = ( norm ‘ 𝐹 ) | |
| 7 | anass | ⊢ ( ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) | |
| 8 | df-3an | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ NrmRing ) ) | |
| 9 | elin | ⊢ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ↔ ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ) | |
| 10 | 9 | anbi1i | ⊢ ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ NrmRing ) ) |
| 11 | 8 10 | bitr4i | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ) |
| 12 | 11 | anbi1i | ⊢ ( ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 13 | fvexd | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) | |
| 14 | id | ⊢ ( 𝑓 = ( Scalar ‘ 𝑤 ) → 𝑓 = ( Scalar ‘ 𝑤 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) | |
| 16 | 15 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 17 | 14 16 | sylan9eqr | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → 𝑓 = 𝐹 ) |
| 18 | 17 | eleq1d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( 𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing ) ) |
| 19 | 17 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 20 | 19 5 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
| 21 | simpl | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → 𝑤 = 𝑊 ) | |
| 22 | 21 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 23 | 22 1 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 24 | 21 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑤 ) = ( norm ‘ 𝑊 ) ) |
| 25 | 24 2 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑤 ) = 𝑁 ) |
| 26 | 21 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
| 27 | 26 3 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ·𝑠 ‘ 𝑤 ) = · ) |
| 28 | 27 | oveqd | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 29 | 25 28 | fveq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) ) |
| 30 | 17 | fveq2d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑓 ) = ( norm ‘ 𝐹 ) ) |
| 31 | 30 6 | eqtr4di | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( norm ‘ 𝑓 ) = 𝐴 ) |
| 32 | 31 | fveq1d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 33 | 25 | fveq1d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
| 34 | 32 33 | oveq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 35 | 29 34 | eqeq12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 36 | 23 35 | raleqbidv | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 37 | 20 36 | raleqbidv | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |
| 38 | 18 37 | anbi12d | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 39 | 13 38 | sbcied | ⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) ↔ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 40 | df-nlm | ⊢ NrmMod = { 𝑤 ∈ ( NrmGrp ∩ LMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] ( 𝑓 ∈ NrmRing ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑓 ) ∀ 𝑦 ∈ ( Base ‘ 𝑤 ) ( ( norm ‘ 𝑤 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( ( ( norm ‘ 𝑓 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑤 ) ‘ 𝑦 ) ) ) } | |
| 41 | 39 40 | elrab2 | ⊢ ( 𝑊 ∈ NrmMod ↔ ( 𝑊 ∈ ( NrmGrp ∩ LMod ) ∧ ( 𝐹 ∈ NrmRing ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 42 | 7 12 41 | 3bitr4ri | ⊢ ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝑉 ( 𝑁 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) · ( 𝑁 ‘ 𝑦 ) ) ) ) |