This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for tcphcph : homogeneity. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | ||
| tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| tcphcph.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) | ||
| tcphcph.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) | ||
| tcphcph.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| tcphcph.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| tcphcphlem2.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| tcphcphlem2.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | tcphcphlem2 | ⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) ) = ( ( abs ‘ 𝑋 ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 5 | tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | |
| 6 | tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 7 | tcphcph.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) | |
| 8 | tcphcph.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) | |
| 9 | tcphcph.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 10 | tcphcph.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 11 | tcphcphlem2.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 12 | tcphcphlem2.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 13 | 1 2 3 4 5 | phclm | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 14 | 3 9 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 16 | 15 11 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 17 | 16 | cjmulrcld | ⊢ ( 𝜑 → ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ∈ ℝ ) |
| 18 | 16 | cjmulge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) |
| 19 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 20 | 12 19 | mpdan | ⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 21 | oveq12 | ⊢ ( ( 𝑥 = 𝑌 ∧ 𝑥 = 𝑌 ) → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) | |
| 22 | 21 | anidms | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) |
| 23 | 22 | breq2d | ⊢ ( 𝑥 = 𝑌 → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( 𝑌 , 𝑌 ) ) ) |
| 24 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 25 | 23 24 12 | rspcdva | ⊢ ( 𝜑 → 0 ≤ ( 𝑌 , 𝑌 ) ) |
| 26 | 17 18 20 25 | sqrtmuld | ⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 · ( ∗ ‘ 𝑋 ) ) · ( 𝑌 , 𝑌 ) ) ) = ( ( √ ‘ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 27 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 28 | 4 27 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 29 | 2 3 10 9 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 · 𝑌 ) ∈ 𝑉 ) |
| 30 | 28 11 12 29 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · 𝑌 ) ∈ 𝑉 ) |
| 31 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 32 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 33 | 3 6 2 9 10 31 32 | ipassr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( 𝑋 · 𝑌 ) ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾 ) ) → ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) = ( ( ( 𝑋 · 𝑌 ) , 𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
| 34 | 4 30 12 11 33 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) = ( ( ( 𝑋 · 𝑌 ) , 𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
| 35 | 3 | clmmul | ⊢ ( 𝑊 ∈ ℂMod → · = ( .r ‘ 𝐹 ) ) |
| 36 | 13 35 | syl | ⊢ ( 𝜑 → · = ( .r ‘ 𝐹 ) ) |
| 37 | 36 | oveqd | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 , 𝑌 ) ) = ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ) |
| 38 | 3 6 2 9 10 31 | ipass | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑋 · 𝑌 ) , 𝑌 ) = ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ) |
| 39 | 4 11 12 12 38 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) , 𝑌 ) = ( 𝑋 ( .r ‘ 𝐹 ) ( 𝑌 , 𝑌 ) ) ) |
| 40 | 37 39 | eqtr4d | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑌 , 𝑌 ) ) = ( ( 𝑋 · 𝑌 ) , 𝑌 ) ) |
| 41 | 3 | clmcj | ⊢ ( 𝑊 ∈ ℂMod → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 42 | 13 41 | syl | ⊢ ( 𝜑 → ∗ = ( *𝑟 ‘ 𝐹 ) ) |
| 43 | 42 | fveq1d | ⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 44 | 36 40 43 | oveq123d | ⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑌 , 𝑌 ) ) · ( ∗ ‘ 𝑋 ) ) = ( ( ( 𝑋 · 𝑌 ) , 𝑌 ) ( .r ‘ 𝐹 ) ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑋 ) ) ) |
| 45 | 20 | recnd | ⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℂ ) |
| 46 | 16 | cjcld | ⊢ ( 𝜑 → ( ∗ ‘ 𝑋 ) ∈ ℂ ) |
| 47 | 16 45 46 | mul32d | ⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑌 , 𝑌 ) ) · ( ∗ ‘ 𝑋 ) ) = ( ( 𝑋 · ( ∗ ‘ 𝑋 ) ) · ( 𝑌 , 𝑌 ) ) ) |
| 48 | 34 44 47 | 3eqtr2d | ⊢ ( 𝜑 → ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) = ( ( 𝑋 · ( ∗ ‘ 𝑋 ) ) · ( 𝑌 , 𝑌 ) ) ) |
| 49 | 48 | fveq2d | ⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) ) = ( √ ‘ ( ( 𝑋 · ( ∗ ‘ 𝑋 ) ) · ( 𝑌 , 𝑌 ) ) ) ) |
| 50 | absval | ⊢ ( 𝑋 ∈ ℂ → ( abs ‘ 𝑋 ) = ( √ ‘ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) ) | |
| 51 | 16 50 | syl | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) = ( √ ‘ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) ) |
| 52 | 51 | oveq1d | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) = ( ( √ ‘ ( 𝑋 · ( ∗ ‘ 𝑋 ) ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 53 | 26 49 52 | 3eqtr4d | ⊢ ( 𝜑 → ( √ ‘ ( ( 𝑋 · 𝑌 ) , ( 𝑋 · 𝑌 ) ) ) = ( ( abs ‘ 𝑋 ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |