This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function to augment a subcomplex pre-Hilbert space with norm. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphval.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| Assertion | tcphval | ⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | tcphval.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 4 | id | ⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) | |
| 5 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 7 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ·𝑖 ‘ 𝑤 ) = ( ·𝑖 ‘ 𝑊 ) ) | |
| 8 | 7 3 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ·𝑖 ‘ 𝑤 ) = , ) |
| 9 | 8 | oveqd | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) = ( 𝑥 , 𝑥 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑤 = 𝑊 → ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) = ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
| 11 | 6 10 | mpteq12dv | ⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 12 | 4 11 | oveq12d | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
| 13 | df-tcph | ⊢ toℂPreHil = ( 𝑤 ∈ V ↦ ( 𝑤 toNrmGrp ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ) | |
| 14 | ovex | ⊢ ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ∈ V | |
| 15 | 12 13 14 | fvmpt | ⊢ ( 𝑊 ∈ V → ( toℂPreHil ‘ 𝑊 ) = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
| 16 | fvprc | ⊢ ( ¬ 𝑊 ∈ V → ( toℂPreHil ‘ 𝑊 ) = ∅ ) | |
| 17 | reldmtng | ⊢ Rel dom toNrmGrp | |
| 18 | 17 | ovprc1 | ⊢ ( ¬ 𝑊 ∈ V → ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) = ∅ ) |
| 19 | 16 18 | eqtr4d | ⊢ ( ¬ 𝑊 ∈ V → ( toℂPreHil ‘ 𝑊 ) = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
| 20 | 15 19 | pm2.61i | ⊢ ( toℂPreHil ‘ 𝑊 ) = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 21 | 1 20 | eqtri | ⊢ 𝐺 = ( 𝑊 toNrmGrp ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |