This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subcomplex pre-Hilbert space is exactly a pre-Hilbert space over a subfield of the field of complex numbers closed under square roots of nonnegative reals equipped with a norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| iscph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| iscph.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| iscph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| iscph.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | iscph | ⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | iscph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | iscph.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 4 | iscph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | iscph.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 6 | elin | ⊢ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ↔ ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ) | |
| 7 | 6 | anbi1i | ⊢ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 8 | df-3an | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 10 | 9 | anbi1i | ⊢ ( ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
| 11 | fvexd | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) ∈ V ) | |
| 12 | fvexd | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( Base ‘ 𝑓 ) ∈ V ) | |
| 13 | simplr | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑓 = ( Scalar ‘ 𝑤 ) ) | |
| 14 | simpll | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑤 = 𝑊 ) | |
| 15 | 14 | fveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
| 16 | 15 4 | eqtr4di | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 17 | 13 16 | eqtrd | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑓 = 𝐹 ) |
| 18 | simpr | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑘 = ( Base ‘ 𝑓 ) ) | |
| 19 | 17 | fveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐹 ) ) |
| 20 | 19 5 | eqtr4di | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑓 ) = 𝐾 ) |
| 21 | 18 20 | eqtrd | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → 𝑘 = 𝐾 ) |
| 22 | 21 | oveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ℂfld ↾s 𝑘 ) = ( ℂfld ↾s 𝐾 ) ) |
| 23 | 17 22 | eqeq12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑓 = ( ℂfld ↾s 𝑘 ) ↔ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 24 | 21 | ineq1d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑘 ∩ ( 0 [,) +∞ ) ) = ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) |
| 25 | 24 | imaeq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) = ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) |
| 26 | 25 21 | sseq12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ↔ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ) ) |
| 27 | 14 | fveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( norm ‘ 𝑤 ) = ( norm ‘ 𝑊 ) ) |
| 28 | 27 3 | eqtr4di | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( norm ‘ 𝑤 ) = 𝑁 ) |
| 29 | 14 | fveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 30 | 29 1 | eqtr4di | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 31 | 14 | fveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ·𝑖 ‘ 𝑤 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 32 | 31 2 | eqtr4di | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ·𝑖 ‘ 𝑤 ) = , ) |
| 33 | 32 | oveqd | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) = ( 𝑥 , 𝑥 ) ) |
| 34 | 33 | fveq2d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) = ( √ ‘ ( 𝑥 , 𝑥 ) ) ) |
| 35 | 30 34 | mpteq12dv | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 36 | 28 35 | eqeq12d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ↔ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
| 37 | 23 26 36 | 3anbi123d | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
| 38 | 3anass | ⊢ ( ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) | |
| 39 | 37 38 | bitrdi | ⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) ∧ 𝑘 = ( Base ‘ 𝑓 ) ) → ( ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 40 | 12 39 | sbcied | ⊢ ( ( 𝑤 = 𝑊 ∧ 𝑓 = ( Scalar ‘ 𝑤 ) ) → ( [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 41 | 11 40 | sbcied | ⊢ ( 𝑤 = 𝑊 → ( [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) ↔ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 42 | df-cph | ⊢ ℂPreHil = { 𝑤 ∈ ( PreHil ∩ NrmMod ) ∣ [ ( Scalar ‘ 𝑤 ) / 𝑓 ] [ ( Base ‘ 𝑓 ) / 𝑘 ] ( 𝑓 = ( ℂfld ↾s 𝑘 ) ∧ ( √ “ ( 𝑘 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝑘 ∧ ( norm ‘ 𝑤 ) = ( 𝑥 ∈ ( Base ‘ 𝑤 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑤 ) 𝑥 ) ) ) ) } | |
| 43 | 41 42 | elrab2 | ⊢ ( 𝑊 ∈ ℂPreHil ↔ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) |
| 44 | anass | ⊢ ( ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ↔ ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) ) | |
| 45 | 43 44 | bitr4i | ⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ ( PreHil ∩ NrmMod ) ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) |
| 46 | 3anass | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) ) | |
| 47 | 10 45 46 | 3bitr4i | ⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |