This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cphsubrg . (Contributed by Mario Carneiro, 9-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsubrglem.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| cphsubrglem.1 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐴 ) ) | ||
| cphsubrglem.2 | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) | ||
| Assertion | cphsubrglem | ⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 = ( 𝐴 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsubrglem.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 2 | cphsubrglem.1 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐴 ) ) | |
| 3 | cphsubrglem.2 | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) | |
| 4 | 2 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 5 | drngring | ⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) | |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 7 | 2 6 | eqeltrrd | ⊢ ( 𝜑 → ( ℂfld ↾s 𝐴 ) ∈ Ring ) |
| 8 | eqid | ⊢ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) | |
| 9 | eqid | ⊢ ( 0g ‘ ( ℂfld ↾s 𝐴 ) ) = ( 0g ‘ ( ℂfld ↾s 𝐴 ) ) | |
| 10 | 8 9 | ring0cl | ⊢ ( ( ℂfld ↾s 𝐴 ) ∈ Ring → ( 0g ‘ ( ℂfld ↾s 𝐴 ) ) ∈ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 11 | reldmress | ⊢ Rel dom ↾s | |
| 12 | eqid | ⊢ ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s 𝐴 ) | |
| 13 | 11 12 8 | elbasov | ⊢ ( ( 0g ‘ ( ℂfld ↾s 𝐴 ) ) ∈ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) → ( ℂfld ∈ V ∧ 𝐴 ∈ V ) ) |
| 14 | 7 10 13 | 3syl | ⊢ ( 𝜑 → ( ℂfld ∈ V ∧ 𝐴 ∈ V ) ) |
| 15 | 14 | simprd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 16 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 17 | 12 16 | ressbas | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ ℂ ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 18 | 15 17 | syl | ⊢ ( 𝜑 → ( 𝐴 ∩ ℂ ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
| 19 | 4 18 | eqtr4d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( 𝐴 ∩ ℂ ) ) |
| 20 | 1 19 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( 𝐴 ∩ ℂ ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝜑 → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s ( 𝐴 ∩ ℂ ) ) ) |
| 22 | 16 | ressinbas | ⊢ ( 𝐴 ∈ V → ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s ( 𝐴 ∩ ℂ ) ) ) |
| 23 | 15 22 | syl | ⊢ ( 𝜑 → ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s ( 𝐴 ∩ ℂ ) ) ) |
| 24 | 21 23 | eqtr4d | ⊢ ( 𝜑 → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐴 ) ) |
| 25 | 2 24 | eqtr4d | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 26 | 25 6 | eqeltrrd | ⊢ ( 𝜑 → ( ℂfld ↾s 𝐾 ) ∈ Ring ) |
| 27 | cnring | ⊢ ℂfld ∈ Ring | |
| 28 | 26 27 | jctil | ⊢ ( 𝜑 → ( ℂfld ∈ Ring ∧ ( ℂfld ↾s 𝐾 ) ∈ Ring ) ) |
| 29 | 12 16 | ressbasss | ⊢ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ⊆ ℂ |
| 30 | 4 29 | eqsstrdi | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
| 31 | 1 30 | eqsstrid | ⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 32 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 33 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 34 | 32 33 | drngunz | ⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝐹 ) ≠ ( 0g ‘ 𝐹 ) ) |
| 35 | 3 34 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ≠ ( 0g ‘ 𝐹 ) ) |
| 36 | 25 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 37 | ringgrp | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) | |
| 38 | 27 37 | mp1i | ⊢ ( 𝜑 → ℂfld ∈ Grp ) |
| 39 | ringgrp | ⊢ ( ( ℂfld ↾s 𝐾 ) ∈ Ring → ( ℂfld ↾s 𝐾 ) ∈ Grp ) | |
| 40 | 26 39 | syl | ⊢ ( 𝜑 → ( ℂfld ↾s 𝐾 ) ∈ Grp ) |
| 41 | 16 | issubg | ⊢ ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ↔ ( ℂfld ∈ Grp ∧ 𝐾 ⊆ ℂ ∧ ( ℂfld ↾s 𝐾 ) ∈ Grp ) ) |
| 42 | 38 31 40 41 | syl3anbrc | ⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
| 43 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 44 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 45 | 43 44 | subg0 | ⊢ ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 46 | 42 45 | syl | ⊢ ( 𝜑 → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 47 | 36 46 | eqtr4d | ⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = 0 ) |
| 48 | 35 47 | neeqtrd | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ≠ 0 ) |
| 49 | 48 | neneqd | ⊢ ( 𝜑 → ¬ ( 1r ‘ 𝐹 ) = 0 ) |
| 50 | 1 33 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 51 | 6 50 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 52 | 31 51 | sseldd | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ ℂ ) |
| 53 | 52 | sqvald | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) ↑ 2 ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝐹 ) ) ) |
| 54 | 25 | fveq2d | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) = ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 55 | 54 | oveq1d | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) · ( 1r ‘ 𝐹 ) ) ) |
| 56 | 25 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 57 | 1 56 | eqtrid | ⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 58 | 51 57 | eleqtrd | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 59 | eqid | ⊢ ( Base ‘ ( ℂfld ↾s 𝐾 ) ) = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) | |
| 60 | 1 | fvexi | ⊢ 𝐾 ∈ V |
| 61 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 62 | 43 61 | ressmulr | ⊢ ( 𝐾 ∈ V → · = ( .r ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 63 | 60 62 | ax-mp | ⊢ · = ( .r ‘ ( ℂfld ↾s 𝐾 ) ) |
| 64 | eqid | ⊢ ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) = ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) | |
| 65 | 59 63 64 | ringlidm | ⊢ ( ( ( ℂfld ↾s 𝐾 ) ∈ Ring ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) → ( ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) · ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
| 66 | 26 58 65 | syl2anc | ⊢ ( 𝜑 → ( ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) · ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
| 67 | 53 55 66 | 3eqtrd | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) ↑ 2 ) = ( 1r ‘ 𝐹 ) ) |
| 68 | sq01 | ⊢ ( ( 1r ‘ 𝐹 ) ∈ ℂ → ( ( ( 1r ‘ 𝐹 ) ↑ 2 ) = ( 1r ‘ 𝐹 ) ↔ ( ( 1r ‘ 𝐹 ) = 0 ∨ ( 1r ‘ 𝐹 ) = 1 ) ) ) | |
| 69 | 52 68 | syl | ⊢ ( 𝜑 → ( ( ( 1r ‘ 𝐹 ) ↑ 2 ) = ( 1r ‘ 𝐹 ) ↔ ( ( 1r ‘ 𝐹 ) = 0 ∨ ( 1r ‘ 𝐹 ) = 1 ) ) ) |
| 70 | 67 69 | mpbid | ⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) = 0 ∨ ( 1r ‘ 𝐹 ) = 1 ) ) |
| 71 | 70 | ord | ⊢ ( 𝜑 → ( ¬ ( 1r ‘ 𝐹 ) = 0 → ( 1r ‘ 𝐹 ) = 1 ) ) |
| 72 | 49 71 | mpd | ⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) = 1 ) |
| 73 | 72 51 | eqeltrrd | ⊢ ( 𝜑 → 1 ∈ 𝐾 ) |
| 74 | 31 73 | jca | ⊢ ( 𝜑 → ( 𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾 ) ) |
| 75 | cnfld1 | ⊢ 1 = ( 1r ‘ ℂfld ) | |
| 76 | 16 75 | issubrg | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ↔ ( ( ℂfld ∈ Ring ∧ ( ℂfld ↾s 𝐾 ) ∈ Ring ) ∧ ( 𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾 ) ) ) |
| 77 | 28 74 76 | sylanbrc | ⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 78 | 25 20 77 | 3jca | ⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 = ( 𝐴 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |