This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of scalar product for a left module. ( hvmulcl analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lmodvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lmodvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | biid | ⊢ ( 𝑊 ∈ LMod ↔ 𝑊 ∈ LMod ) | |
| 6 | pm4.24 | ⊢ ( 𝑅 ∈ 𝐾 ↔ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ) | |
| 7 | pm4.24 | ⊢ ( 𝑋 ∈ 𝑉 ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 10 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 12 | 1 8 3 2 4 9 10 11 | lmodlema | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 𝑅 · 𝑋 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) ) = ( ( 𝑅 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑅 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑅 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑋 ) ) ) ∧ ( ( ( 𝑅 ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( 𝑅 · ( 𝑅 · 𝑋 ) ) ∧ ( ( 1r ‘ 𝐹 ) · 𝑋 ) = 𝑋 ) ) ) |
| 13 | 12 | simpld | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑅 · 𝑋 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) ) = ( ( 𝑅 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑅 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑅 · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑅 · 𝑋 ) ) ) ) |
| 14 | 13 | simp1d | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |
| 15 | 5 6 7 14 | syl3anb | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑅 · 𝑋 ) ∈ 𝑉 ) |