This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topology generated by a normed structure. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngnm.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| tngnm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
| tngnm.a | ⊢ 𝐴 ∈ V | ||
| Assertion | tngnm | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 = ( norm ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngnm.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp 𝑁 ) | |
| 2 | tngnm.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 3 | tngnm.a | ⊢ 𝐴 ∈ V | |
| 4 | simpr | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 : 𝑋 ⟶ 𝐴 ) | |
| 5 | 4 | feqmptd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑁 ‘ 𝑥 ) ) ) |
| 6 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 7 | 2 6 | grpsubf | ⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
| 9 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) | |
| 10 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 11 | 2 10 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 13 | 9 12 | opelxpd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ∈ ( 𝑋 × 𝑋 ) ) |
| 14 | fvco3 | ⊢ ( ( ( -g ‘ 𝐺 ) : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ∧ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ∈ ( 𝑋 × 𝑋 ) ) → ( ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) = ( 𝑁 ‘ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) ) ) | |
| 15 | 8 13 14 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) = ( 𝑁 ‘ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) ) ) |
| 16 | df-ov | ⊢ ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) = ( ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) | |
| 17 | df-ov | ⊢ ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) | |
| 18 | 17 | fveq2i | ⊢ ( 𝑁 ‘ ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) = ( 𝑁 ‘ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , ( 0g ‘ 𝐺 ) 〉 ) ) |
| 19 | 15 16 18 | 3eqtr4g | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) = ( 𝑁 ‘ ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ) |
| 20 | 2 10 6 | grpsubid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 21 | 20 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
| 22 | 21 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑥 ( -g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) = ( 𝑁 ‘ 𝑥 ) ) |
| 23 | 19 22 | eqtr2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑥 ) = ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) ) |
| 24 | 23 | mpteq2dva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑁 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) ) ) |
| 25 | 2 | fvexi | ⊢ 𝑋 ∈ V |
| 26 | fex2 | ⊢ ( ( 𝑁 : 𝑋 ⟶ 𝐴 ∧ 𝑋 ∈ V ∧ 𝐴 ∈ V ) → 𝑁 ∈ V ) | |
| 27 | 25 3 26 | mp3an23 | ⊢ ( 𝑁 : 𝑋 ⟶ 𝐴 → 𝑁 ∈ V ) |
| 28 | 27 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 ∈ V ) |
| 29 | 1 2 | tngbas | ⊢ ( 𝑁 ∈ V → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 30 | 28 29 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑋 = ( Base ‘ 𝑇 ) ) |
| 31 | 1 6 | tngds | ⊢ ( 𝑁 ∈ V → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 32 | 28 31 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) = ( dist ‘ 𝑇 ) ) |
| 33 | eqidd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑥 = 𝑥 ) | |
| 34 | 1 10 | tng0 | ⊢ ( 𝑁 ∈ V → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝑇 ) ) |
| 35 | 28 34 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝑇 ) ) |
| 36 | 32 33 35 | oveq123d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) = ( 𝑥 ( dist ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) |
| 37 | 30 36 | mpteq12dv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑇 ) ↦ ( 𝑥 ( dist ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) ) |
| 38 | eqid | ⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) | |
| 39 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 40 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 41 | eqid | ⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) | |
| 42 | 38 39 40 41 | nmfval | ⊢ ( norm ‘ 𝑇 ) = ( 𝑥 ∈ ( Base ‘ 𝑇 ) ↦ ( 𝑥 ( dist ‘ 𝑇 ) ( 0g ‘ 𝑇 ) ) ) |
| 43 | 37 42 | eqtr4di | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ( 𝑁 ∘ ( -g ‘ 𝐺 ) ) ( 0g ‘ 𝐺 ) ) ) = ( norm ‘ 𝑇 ) ) |
| 44 | 5 24 43 | 3eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 : 𝑋 ⟶ 𝐴 ) → 𝑁 = ( norm ‘ 𝑇 ) ) |