This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pre-Hilbert space whose field of scalars is a restriction of the field of complex numbers is a subcomplex module. TODO: redundant hypotheses. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | ||
| Assertion | phclm | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 5 | tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | |
| 6 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 9 | phllvec | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 11 | 3 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 13 | 8 5 12 | cphsubrglem | ⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) = ( 𝐾 ∩ ℂ ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 14 | 13 | simp1d | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ) |
| 15 | 13 | simp3d | ⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) |
| 16 | 3 8 | isclm | ⊢ ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂfld ↾s ( Base ‘ 𝐹 ) ) ∧ ( Base ‘ 𝐹 ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 17 | 7 14 15 16 | syl3anbrc | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |