This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed ring restricted to a subring is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgnrg.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| Assertion | subrgnrg | ⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → 𝐻 ∈ NrmRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgnrg.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | nrgngp | ⊢ ( 𝐺 ∈ NrmRing → 𝐺 ∈ NrmGrp ) | |
| 3 | subrgsubg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝐺 ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 4 | 1 | subgngp | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ NrmGrp ) |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → 𝐻 ∈ NrmGrp ) |
| 6 | 3 | adantl | ⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 7 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( norm ‘ 𝐻 ) = ( norm ‘ 𝐻 ) | |
| 9 | 1 7 8 | subgnm | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( norm ‘ 𝐻 ) = ( ( norm ‘ 𝐺 ) ↾ 𝐴 ) ) |
| 10 | 6 9 | syl | ⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → ( norm ‘ 𝐻 ) = ( ( norm ‘ 𝐺 ) ↾ 𝐴 ) ) |
| 11 | eqid | ⊢ ( AbsVal ‘ 𝐺 ) = ( AbsVal ‘ 𝐺 ) | |
| 12 | 7 11 | nrgabv | ⊢ ( 𝐺 ∈ NrmRing → ( norm ‘ 𝐺 ) ∈ ( AbsVal ‘ 𝐺 ) ) |
| 13 | eqid | ⊢ ( AbsVal ‘ 𝐻 ) = ( AbsVal ‘ 𝐻 ) | |
| 14 | 11 1 13 | abvres | ⊢ ( ( ( norm ‘ 𝐺 ) ∈ ( AbsVal ‘ 𝐺 ) ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → ( ( norm ‘ 𝐺 ) ↾ 𝐴 ) ∈ ( AbsVal ‘ 𝐻 ) ) |
| 15 | 12 14 | sylan | ⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → ( ( norm ‘ 𝐺 ) ↾ 𝐴 ) ∈ ( AbsVal ‘ 𝐻 ) ) |
| 16 | 10 15 | eqeltrd | ⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → ( norm ‘ 𝐻 ) ∈ ( AbsVal ‘ 𝐻 ) ) |
| 17 | 8 13 | isnrg | ⊢ ( 𝐻 ∈ NrmRing ↔ ( 𝐻 ∈ NrmGrp ∧ ( norm ‘ 𝐻 ) ∈ ( AbsVal ‘ 𝐻 ) ) ) |
| 18 | 5 16 17 | sylanbrc | ⊢ ( ( 𝐺 ∈ NrmRing ∧ 𝐴 ∈ ( SubRing ‘ 𝐺 ) ) → 𝐻 ∈ NrmRing ) |