This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a subcomplex pre-Hilbert space augmented with norm. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphnmval.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| tcphnmval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphnmval.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| Assertion | tcphnmval | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphnmval.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | tcphnmval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | tcphnmval.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 5 | 1 2 3 4 | tchnmfval | ⊢ ( 𝑊 ∈ Grp → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 6 | 5 | fveq1d | ⊢ ( 𝑊 ∈ Grp → ( 𝑁 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑋 ) ) |
| 7 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑥 = 𝑋 ) → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) | |
| 8 | 7 | anidms | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑥 = 𝑋 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 10 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) | |
| 11 | fvex | ⊢ ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ V | |
| 12 | 9 10 11 | fvmpt | ⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 13 | 6 12 | sylan9eq | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |